Frontiers of Chemical Science and Engineering >
Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages
Received date: 28 Nov 2018
Accepted date: 17 Mar 2019
Published date: 15 Aug 2020
Copyright
Novel PdCoAg/C nanostructures were successfully synthesized by the polyol method in order to develop electrocatalysts, related to the glucose sensor performance of the high glycemic index in beverages. The characterization of this novel PdCoAg/C electrocatalyst was performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy equipped with energy dispersive X-ray. The characterization results revealed that electronic state of the PdCoAg/C electrocatalyst was modified by the addition of the third metal. The electrochemical performances of the sensor were investigated by cyclic voltammetry and differential pulse voltammetry. The prepared enzyme-free sensor exhibited excellent catalytic activity against glucose with a wide detection range (0.005 to 0.35 mmol∙L−1), low limit of detection (0.003 mmol∙L−1), high sensitivity (4156.34 µA∙mmol−1∙L∙cm−2), and long-term stability (10 days) because of the synergistic effect between the ternary metals. The glucose contents of several energy drinks, fruit juices, and carbonated beverages were analyzed using the novel PdCoAg/NGCE/C sensor system. These results indicate the feasibility for applications in the foods industry.
Key words: non-enzymatic; glucose detection; ternary metals; glycemic index; beverages
Firat Salman , Hilal C. Kazici , Hilal Kivrak . Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(4) : 629 -638 . DOI: 10.1007/s11705-019-1840-1
1 |
Mattheeuws D, Rottiers R, Kaneko J J, Vermeulen A. Diabetes-mellitus in dogs—relationship of obesity to glucose-tolerance and insulin-response. American Journal of Veterinary Research, 1984, 45(1): 98–103
|
2 |
Pawlak D B, Kushner J A, Ludwig D S. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet, 2004, 364(9436): 778–785
|
3 |
Abete I, Parra D, Martinez J A. Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response. Clinical Nutrition (Edinburgh, Lothian), 2008, 27(4): 545–551
|
4 |
Salek-Maghsoudi A, Vakhshiteh F, Torabi R, Hassani S, Ganjali M R, Norouzi P, Hosseini M, Abdollahi M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosensors & Bioelectronics, 2018, 99: 122–135
|
5 |
Jiang D, Liu Q, Wang K, Qian J, Dong X Y, Yang Z T, Du X J, Qiu B J. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors & Bioelectronics, 2014, 54: 273–278
|
6 |
Shabnam L, Faisal S N, Roy A K, Haque E, Minett A I, Gomes V G. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chemistry, 2017, 221: 751–759
|
7 |
Si P, Huang Y J, Wang T H, Ma J M. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Advances, 2013, 3(11): 3487–3502
|
8 |
Dai X L, Deng W Q, You C, Shen Z, Xiong X L, Sun X P A. Ni3N-Co3N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection. Analytical Methods, 2018, 10(15): 1680–1684
|
9 |
Wang Z, Cao X Q, Liu D N, Hao S, Kong R M, Du G, Asiri A M, Sun X P. Copper-nitride nanowires array: An efficient dual-functional catalyst electrode for sensitive and selective non-enzymatic glucose andhydrogen peroxide sensing. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(21): 4986–4989
|
10 |
Xie F Y, Cao X Q, Qu F L, Asiri A M, Sun X P. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors and Actuators. B, Chemical, 2018, 255: 1254–1261
|
11 |
Tian L H, Liu L, Li Y Y, Feng X, Wei Q, Cao W. A novel label-free electrochemical immunosensor for the detection of hepatitis B surface antigen. Analytical Methods, 2016, 8(40): 7380–7386
|
12 |
Kazici H C, Salman F, Caglar A, Kivrak H, Aktas N. Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes, Nanotubes, and Carbon Nanostructures, 2018, 26(3): 145–151
|
13 |
Afraz A, Rafati A A, Hajian A. Analytical sensing of hydrogen peroxide on Ag nanoparticles-multiwalled carbon nanotube-modified glassy carbon electrode. Journal of Solid State Electrochemistry, 2013, 17(7): 2017–2025
|
14 |
Sahin O, Kivrak H, Kivrak A, Kazici H C, Alal O, Atbas D. Facile and rapid synthesis of microwave assisted Pd nanoparticles as non-enzymatic hydrogen peroxide sensor. International Journal of Electrochemical Science, 2017, 12(1): 762–769
|
15 |
Kivrak H, Alal O, Atbas D. Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor. Electrochimica Acta, 2015, 176: 497–503
|
16 |
Guler M, Turkoglu V, Bulut A, Zahmakiran M. Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochimica Acta, 2018, 263: 118–126
|
17 |
Yang J W, Liang X Y, Cui L, Liu H Y, Xie J B, Liu W X. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects. Biosensors & Bioelectronics, 2016, 80: 171–174
|
18 |
Li L H, Zhang W D, Ye J S. Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis, 2008, 20(20): 2212–2216
|
19 |
Ryu J, Kim K, Kim H S, Hahn H T, Lashmore D. Intense pulsed light induced platinum-gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosensors & Bioelectronics, 2010, 26(2): 602–607
|
20 |
Singh B, Dempsey E, Laffir F. Carbon nanochips and nanotubes decorated PtAuPd-based nanocomposites for glucose sensing: Role of support material and efficient Pt utilisation. Sensors and Actuators. B, Chemical, 2014, 205: 401–410
|
21 |
Oyama M, Chen X M, Chen X. Recent nanoarchitectures in metal nanoparticle-graphene nanocomposite modified electrodes for electroanalysis. Analytical Sciences, 2014, 30(5): 529–538
|
22 |
Galvis-Sanchez A C, Santos J R, Rangel A. Standard addition flow method for potentiometric measurements at low concentration levels: Application to the determination of fluoride in food samples. Talanta, 2015, 133(Supp): 1–6
|
23 |
Rousset J L, Bertolini J C, Miegge P. Theory of segregation using the equivalent-medium approximation and bond-strength modifications at surfaces: Application to fee Pd-X alloys. Physical Review. B, 1996, 53(8): 4947–4957
|
24 |
Liu C H, Liu R H, Sun Q J, Chang J B, Gao X, Liu Y, Lee S T, Kang Z H, Wang S D. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale, 2015, 7(14): 6356–6362
|
25 |
Han Y, Zheng J B, Dong S Y. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites. Electrochimica Acta, 2013, 90: 35–43
|
26 |
Wu G H, Song X H, Wu Y F, Chen X M, Luo F, Chen X. Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta, 2013, 105: 379–385
|
27 |
Zhuang Z J, Su X D, Yuan H Y, Sun Q, Xiao D, Choi M M F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst (London), 2008, 133(1): 126–132
|
28 |
Zhang X J, Wang G F, Zhang W, Wei Y, Fang B. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosensors & Bioelectronics, 2009, 24(11): 3395–3398
|
29 |
Yu H, Jian X, Jin J, Zheng X C, Liu R T, Qi G C. Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Microchimica Acta, 2015, 182(1-2): 157–165
|
30 |
Kang X H, Mai Z B, Zou X Y, Cai P X, Mo J Y. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nano tube-modified glassy carbon electrode. Analytical Biochemistry, 2007, 363(1): 143–150
|
31 |
Zhong G X, Zhang W X, Sun Y M, Wei Y Q, Lei Y, Peng H P, Liu A L, Chen Y Z, Lin X H. A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors and Actuators. B, Chemical, 2015, 212: 72–77
|
32 |
Song J, Xu L, Zhou C Y, Xing R Q, Dai Q L, Liu D L, Song H W. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Applied Materials & Interfaces, 2013, 5(24): 12928–12934
|
33 |
Gao H C, Xiao F, Ching C B, Duan H W. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzynnatic amperometric glucose detection. ACS Applied Materials & Interfaces, 2011, 3(8): 3049–3057
|
34 |
Wang C X, Yin L W, Zhang L Y, Gao R. Ti/TiO2 Nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. Journal of Physical Chemistry C, 2010, 114(10): 4408–4413
|
35 |
Liotta L F, Puleo F, La Parola V, Leonardi S G, Donato N, Aloisio D, Neri G. La0.6Sr0.4FeO3-delta and La0.6Sr0.4Co0.2Fe0.8O3-delta perovskite materials for H2O2 and glucose electrochemical sensors. Electroanalysis, 2015, 27(3): 684–692
|
36 |
Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosensors & Bioelectronics, 2010, 25(5): 1070–1074
|
37 |
Li X L, Yao J Y, Liu F L, He H C, Zhou M, Mao N, Xiao P, Zhang Y H. Nickel/copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sensors and Actuators. B, Chemical, 2013, 181: 501–508
|
38 |
Niu X H, Lan M B, Chen C, Zhao H L. Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta, 2012, 99: 1062–1067
|
39 |
Moller M, Over H, Smarsly B, Tarabanko N, Urban S. Electrospun ceria-based nanofibers for the facile assessment of catalyst morphological stability under harsh HCl oxidation reaction conditions. Catalysis Today, 2015, 253: 207–218
|
40 |
Anari R, Amani R, Veissi M. Sugar-sweetened beverages consumption is associated with abdominal obesity risk in diabetic patients. Diabetes & Metabolic Syndrome, 2017, 11: 675–678
|
/
〈 |
|
〉 |