Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages

Firat Salman, Hilal C. Kazici, Hilal Kivrak

PDF(1807 KB)
PDF(1807 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (4) : 629-638. DOI: 10.1007/s11705-019-1840-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages

Author information +
History +

Abstract

Novel PdCoAg/C nanostructures were successfully synthesized by the polyol method in order to develop electrocatalysts, related to the glucose sensor performance of the high glycemic index in beverages. The characterization of this novel PdCoAg/C electrocatalyst was performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and high-resolution transmission electron microscopy equipped with energy dispersive X-ray. The characterization results revealed that electronic state of the PdCoAg/C electrocatalyst was modified by the addition of the third metal. The electrochemical performances of the sensor were investigated by cyclic voltammetry and differential pulse voltammetry. The prepared enzyme-free sensor exhibited excellent catalytic activity against glucose with a wide detection range (0.005 to 0.35 mmol∙L−1), low limit of detection (0.003 mmol∙L−1), high sensitivity (4156.34 µA∙mmol−1∙L∙cm−2), and long-term stability (10 days) because of the synergistic effect between the ternary metals. The glucose contents of several energy drinks, fruit juices, and carbonated beverages were analyzed using the novel PdCoAg/NGCE/C sensor system. These results indicate the feasibility for applications in the foods industry.

Graphical abstract

Keywords

non-enzymatic / glucose detection / ternary metals / glycemic index / beverages

Cite this article

Download citation ▾
Firat Salman, Hilal C. Kazici, Hilal Kivrak. Electrochemical sensor investigation of carbon-supported PdCoAg multimetal catalysts using sugar-containing beverages. Front. Chem. Sci. Eng., 2020, 14(4): 629‒638 https://doi.org/10.1007/s11705-019-1840-1

References

[1]
Mattheeuws D, Rottiers R, Kaneko J J, Vermeulen A. Diabetes-mellitus in dogs—relationship of obesity to glucose-tolerance and insulin-response. American Journal of Veterinary Research, 1984, 45(1): 98–103
[2]
Pawlak D B, Kushner J A, Ludwig D S. Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet, 2004, 364(9436): 778–785
CrossRef Google scholar
[3]
Abete I, Parra D, Martinez J A. Energy-restricted diets based on a distinct food selection affecting the glycemic index induce different weight loss and oxidative response. Clinical Nutrition (Edinburgh, Lothian), 2008, 27(4): 545–551
CrossRef Google scholar
[4]
Salek-Maghsoudi A, Vakhshiteh F, Torabi R, Hassani S, Ganjali M R, Norouzi P, Hosseini M, Abdollahi M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosensors & Bioelectronics, 2018, 99: 122–135
CrossRef Google scholar
[5]
Jiang D, Liu Q, Wang K, Qian J, Dong X Y, Yang Z T, Du X J, Qiu B J. Enhanced non-enzymatic glucose sensing based on copper nanoparticles decorated nitrogen-doped graphene. Biosensors & Bioelectronics, 2014, 54: 273–278
CrossRef Google scholar
[6]
Shabnam L, Faisal S N, Roy A K, Haque E, Minett A I, Gomes V G. Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chemistry, 2017, 221: 751–759
CrossRef Google scholar
[7]
Si P, Huang Y J, Wang T H, Ma J M. Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Advances, 2013, 3(11): 3487–3502
CrossRef Google scholar
[8]
Dai X L, Deng W Q, You C, Shen Z, Xiong X L, Sun X P A. Ni3N-Co3N hybrid nanowire array electrode for high-performance nonenzymatic glucose detection. Analytical Methods, 2018, 10(15): 1680–1684
CrossRef Google scholar
[9]
Wang Z, Cao X Q, Liu D N, Hao S, Kong R M, Du G, Asiri A M, Sun X P. Copper-nitride nanowires array: An efficient dual-functional catalyst electrode for sensitive and selective non-enzymatic glucose andhydrogen peroxide sensing. Chemistry (Weinheim an der Bergstrasse, Germany), 2017, 23(21): 4986–4989
CrossRef Google scholar
[10]
Xie F Y, Cao X Q, Qu F L, Asiri A M, Sun X P. Cobalt nitride nanowire array as an efficient electrochemical sensor for glucose and H2O2 detection. Sensors and Actuators. B, Chemical, 2018, 255: 1254–1261
CrossRef Google scholar
[11]
Tian L H, Liu L, Li Y Y, Feng X, Wei Q, Cao W. A novel label-free electrochemical immunosensor for the detection of hepatitis B surface antigen. Analytical Methods, 2016, 8(40): 7380–7386
CrossRef Google scholar
[12]
Kazici H C, Salman F, Caglar A, Kivrak H, Aktas N. Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes, Nanotubes, and Carbon Nanostructures, 2018, 26(3): 145–151
CrossRef Google scholar
[13]
Afraz A, Rafati A A, Hajian A. Analytical sensing of hydrogen peroxide on Ag nanoparticles-multiwalled carbon nanotube-modified glassy carbon electrode. Journal of Solid State Electrochemistry, 2013, 17(7): 2017–2025
CrossRef Google scholar
[14]
Sahin O, Kivrak H, Kivrak A, Kazici H C, Alal O, Atbas D. Facile and rapid synthesis of microwave assisted Pd nanoparticles as non-enzymatic hydrogen peroxide sensor. International Journal of Electrochemical Science, 2017, 12(1): 762–769
CrossRef Google scholar
[15]
Kivrak H, Alal O, Atbas D. Efficient and rapid microwave-assisted route to synthesize Pt-MnOx hydrogen peroxide sensor. Electrochimica Acta, 2015, 176: 497–503
CrossRef Google scholar
[16]
Guler M, Turkoglu V, Bulut A, Zahmakiran M. Electrochemical sensing of hydrogen peroxide using Pd@Ag bimetallic nanoparticles decorated functionalized reduced graphene oxide. Electrochimica Acta, 2018, 263: 118–126
CrossRef Google scholar
[17]
Yang J W, Liang X Y, Cui L, Liu H Y, Xie J B, Liu W X. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects. Biosensors & Bioelectronics, 2016, 80: 171–174
CrossRef Google scholar
[18]
Li L H, Zhang W D, Ye J S. Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis, 2008, 20(20): 2212–2216
CrossRef Google scholar
[19]
Ryu J, Kim K, Kim H S, Hahn H T, Lashmore D. Intense pulsed light induced platinum-gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosensors & Bioelectronics, 2010, 26(2): 602–607
CrossRef Google scholar
[20]
Singh B, Dempsey E, Laffir F. Carbon nanochips and nanotubes decorated PtAuPd-based nanocomposites for glucose sensing: Role of support material and efficient Pt utilisation. Sensors and Actuators. B, Chemical, 2014, 205: 401–410
CrossRef Google scholar
[21]
Oyama M, Chen X M, Chen X. Recent nanoarchitectures in metal nanoparticle-graphene nanocomposite modified electrodes for electroanalysis. Analytical Sciences, 2014, 30(5): 529–538
CrossRef Google scholar
[22]
Galvis-Sanchez A C, Santos J R, Rangel A. Standard addition flow method for potentiometric measurements at low concentration levels: Application to the determination of fluoride in food samples. Talanta, 2015, 133(Supp): 1–6
CrossRef Google scholar
[23]
Rousset J L, Bertolini J C, Miegge P. Theory of segregation using the equivalent-medium approximation and bond-strength modifications at surfaces: Application to fee Pd-X alloys. Physical Review. B, 1996, 53(8): 4947–4957
CrossRef Google scholar
[24]
Liu C H, Liu R H, Sun Q J, Chang J B, Gao X, Liu Y, Lee S T, Kang Z H, Wang S D. Controlled synthesis and synergistic effects of graphene-supported PdAu bimetallic nanoparticles with tunable catalytic properties. Nanoscale, 2015, 7(14): 6356–6362
CrossRef Google scholar
[25]
Han Y, Zheng J B, Dong S Y. A novel nonenzymatic hydrogen peroxide sensor based on Ag-MnO2-MWCNTs nanocomposites. Electrochimica Acta, 2013, 90: 35–43
CrossRef Google scholar
[26]
Wu G H, Song X H, Wu Y F, Chen X M, Luo F, Chen X. Non-enzymatic electrochemical glucose sensor based on platinum nanoflowers supported on graphene oxide. Talanta, 2013, 105: 379–385
CrossRef Google scholar
[27]
Zhuang Z J, Su X D, Yuan H Y, Sun Q, Xiao D, Choi M M F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst (London), 2008, 133(1): 126–132
CrossRef Google scholar
[28]
Zhang X J, Wang G F, Zhang W, Wei Y, Fang B. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosensors & Bioelectronics, 2009, 24(11): 3395–3398
CrossRef Google scholar
[29]
Yu H, Jian X, Jin J, Zheng X C, Liu R T, Qi G C. Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Microchimica Acta, 2015, 182(1-2): 157–165
CrossRef Google scholar
[30]
Kang X H, Mai Z B, Zou X Y, Cai P X, Mo J Y. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nano tube-modified glassy carbon electrode. Analytical Biochemistry, 2007, 363(1): 143–150
CrossRef Google scholar
[31]
Zhong G X, Zhang W X, Sun Y M, Wei Y Q, Lei Y, Peng H P, Liu A L, Chen Y Z, Lin X H. A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode. Sensors and Actuators. B, Chemical, 2015, 212: 72–77
CrossRef Google scholar
[32]
Song J, Xu L, Zhou C Y, Xing R Q, Dai Q L, Liu D L, Song H W. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. ACS Applied Materials & Interfaces, 2013, 5(24): 12928–12934
CrossRef Google scholar
[33]
Gao H C, Xiao F, Ching C B, Duan H W. One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzynnatic amperometric glucose detection. ACS Applied Materials & Interfaces, 2011, 3(8): 3049–3057
CrossRef Google scholar
[34]
Wang C X, Yin L W, Zhang L Y, Gao R. Ti/TiO2 Nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. Journal of Physical Chemistry C, 2010, 114(10): 4408–4413
CrossRef Google scholar
[35]
Liotta L F, Puleo F, La Parola V, Leonardi S G, Donato N, Aloisio D, Neri G. La0.6Sr0.4FeO3-delta and La0.6Sr0.4Co0.2Fe0.8O3-delta perovskite materials for H2O2 and glucose electrochemical sensors. Electroanalysis, 2015, 27(3): 684–692
CrossRef Google scholar
[36]
Shan C S, Yang H F, Han D X, Zhang Q X, Ivaska A, Niu L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosensors & Bioelectronics, 2010, 25(5): 1070–1074
CrossRef Google scholar
[37]
Li X L, Yao J Y, Liu F L, He H C, Zhou M, Mao N, Xiao P, Zhang Y H. Nickel/copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sensors and Actuators. B, Chemical, 2013, 181: 501–508
CrossRef Google scholar
[38]
Niu X H, Lan M B, Chen C, Zhao H L. Nonenzymatic electrochemical glucose sensor based on novel Pt-Pd nanoflakes. Talanta, 2012, 99: 1062–1067
CrossRef Google scholar
[39]
Moller M, Over H, Smarsly B, Tarabanko N, Urban S. Electrospun ceria-based nanofibers for the facile assessment of catalyst morphological stability under harsh HCl oxidation reaction conditions. Catalysis Today, 2015, 253: 207–218
CrossRef Google scholar
[40]
Anari R, Amani R, Veissi M. Sugar-sweetened beverages consumption is associated with abdominal obesity risk in diabetic patients. Diabetes & Metabolic Syndrome, 2017, 11: 675–678
CrossRef Google scholar

Acknowledgements

This work was financially supported by the Van Yüzüncü Yıl University Scientific Research Projects Coordination Unit of Turkey (BAP) project (Project No: FYL-2018-6896).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1807 KB)

Accesses

Citations

Detail

Sections
Recommended

/