REVIEW ARTICLE

Layer-like FAU-type zeolites: A comparative view on different preparation routes

  • Bastian Reiprich ,
  • Tobias Weissenberger ,
  • Wilhelm Schwieger ,
  • Alexandra Inayat
Expand
  • Institute of Chemical Reaction Engineering, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91058, Germany

Received date: 16 Apr 2019

Accepted date: 26 Jul 2019

Published date: 15 Apr 2020

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

The creation of intergrown layer-like zeolite crystals is one route to form hierarchical zeolites. Faujasite-type (FAU-type) zeolites are among the industrially most important zeolites and the implementation of hierarchical porosity is a promising way to optimise their catalytic and adsorptive performance. After a short general survey into routes for the preparation of hierarchical pore systems in FAU, we will review the currently existing strategies for the synthesis of FAU with layer-like morphology. Those strategies are mainly based on the presence of morphology modifying agents in the synthesis mixture. However, a very recent approach is the synthesis of layer-like FAU-type zeolite crystals assembled in an intergrown manner in the absence of such additives, just by finely adjusting the crystallization temperature. This additive-free preparation route for layer-like FAU, which appears very attractive from an ecological as well as economic point of view, is highlighted in this review. Concluding, a comparison, including powder X-ray diffraction, scanning and transmission electron microscopy, nitrogen physisorption and elemental analysis, between conventional FAU and three layer-like FAU obtained by different synthesis routes was carried out to show the structural, morphological and textural differences and similarities of these materials.

Cite this article

Bastian Reiprich , Tobias Weissenberger , Wilhelm Schwieger , Alexandra Inayat . Layer-like FAU-type zeolites: A comparative view on different preparation routes[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(2) : 127 -142 . DOI: 10.1007/s11705-019-1883-3

Acknowledgement

The authors gratefully acknowledge financial support from the Bavarian Research Foundation (BFS), from the State of Bavaria in frame of the projekt BTHA- FV-17 and the support of the Cluster of Excellence “Engineering of Advanced Materials” at FAU Erlangen-Nürnberg founded by the DFG. We thank Professor Michael Tsapatsis and his co-workers, University of Minnesota, for their kind support of the TEM measurements. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.
1
Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161

DOI

2
Bathen D, Breitbach M. Technische Adsorbentien. In: Adsorptionstechnik. Berlin: Springer International Publishing, 2001, 13–48

3
Mckee D W. Separation of an oxygen-nitrogen mixture. US Patent, 3 140 932, 1964-07-14

4
McDaniel C V, Maher P K. Stabilized zeolites. US Patent, 3 449 070, 1969-06-10

5
Baker R W, Ciapetta F G, Wilson C P Jr, Maher P K. Process for preparing molecular sieve containing cracking catalysts. US Patent, 3 425 956, 1969-02-04

6
Dobres R M. Hydrocracking catalyst and process. US Patent, 3 431 196, 1969-03-04

7
Seubold F H. Hydrocracking process and catalyst. US Patent, 2 983 670, 1961-05-09

8
Milton R M. Molecular sieve adsorbents. US Patent, 2 882 244, 1959-04-14

9
Breck D W. Crystalline zeolite Y. US Patent, 3 130 007, 1964-04-21

10
Kühl G H. Crystallization of low-silica faujasite (SiO2/Al2O3~ 2.0). Zeolites, 1987, 7(5): 451–457

DOI

11
ExxonMobil Oil Corp. Manufacture of low silica faujasite. GB Patent, 1 580 928, 1980-12-10

12
Auerbach S M, Henson N J, Cheetham A K, Metiu H I. Transport theory for cationic zeolites: Diffusion of benzene in Na-Y. Journal of Physical Chemistry, 1995, 99(26): 10600–10608

DOI

13
Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614

DOI

14
Post M F M. Diffusion in zeolite molecular sieves. In: Studies in Surface Science and Catalysis. 58th ed. Amsterdam: Elsevier, 1991, 391–443

15
Mehlhorn D, Inayat A, Schwieger W, Valiullin R, Kärger J. Probing mass transfer in mesoporous Faujasite-type zeolite nanosheet assemblies. ChemPhysChem, 2014, 15(8): 1681–1686

DOI

16
Mehlhorn D, Valiullin R, Kärger J, Cho K, Ryoo R. Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem, 2012, 13(6): 1495–1499

DOI

17
Christensen C H, Johannsen K, Toernqvist E, Schmidt I, Topsøe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(3-4): 117–122

DOI

18
Groen J C, Zhu W, Brouwer S, Huynink S J, Kapteijn F, Moulijn J A, Pérez-Ramírez J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. Journal of the American Chemical Society, 2007, 129(2): 355–360

DOI

19
Kärger J, Valiullin R. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chemical Society Reviews, 2013, 42(9): 4172–4197

DOI

20
Verboekend D, Nuttens N, Locus R, Van Aelst J, Verolme P, Groen J, Pérez-Ramírez J, Sels B. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45(12): 3331–3352

DOI

21
Su B-L, Sanchez C, Yang X-Y. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012, 1–678

22
Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928

DOI

23
Verboekend D, Pérez-Ramírez J. Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 2011, 1(6): 879–890

DOI

24
Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376

DOI

25
Schwieger W, Machoke A G, Reiprich B, Weissenberger T, Selvam T, Hartmann M. Hierarchical zeolites. In: Zeolites in Catalysis: Properties and Applications. Cambridge: The Royal Society of Chemistry, 2017, 103–145

26
Roth W J, Gil B, Makowski W, Marszalek B, Eliášová P. Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45(12): 3400–3438

DOI

27
Přech J, Pizarro P, Serrano D, Čejka J. From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306

DOI

28
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

DOI

29
Inayat A, Knoke I, Spiecker E, Schwieger W. Assemblies of mesoporous FAU-type zeolite nanosheets. Angewandte Chemie International Edition, 2012, 51(8): 1962–1965

DOI

30
Zhang X, Liu D, Xu D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687

DOI

31
Lupulescu A I, Rimer J D. Tailoring silicalite-1 crystal morphology with molecular modifiers. Angewandte Chemie International Edition, 2012, 51(14): 3345–3349

DOI

32
Bergerhoff G, Koyama H, Nowacki W. On the crystal structure of the minerals from the chabazite and faujasite groups. Cellular and Molecular Life Sciences, 1956, 12(11): 418–419in German)

DOI

33
Bergerhoff G, Baur W H, Nowacki W. Über die kristallstrukturen des faujasits. Neues Jahrbuch für Mineralogie Monatshefte, 1958, 198: 193–200

34
Barrer R. The separation of molecules with the help of crystal sieves. Brennstoff-Chemie, 1954, 35: 325–334 (in German)

35
Breck D W, Flanigen E. Synthesis and properties of union carbide zeolites L, X and Y. Molecular sieves, 1968: 47–60

36
Kerr G T. Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. Journal of Physical Chemistry, 1968, 72(7): 2594–2596

DOI

37
Maher P K, McDaniel C V. Zeolite z-14us and method of preparation thereof. US Patent, 3 293 192, 1966-10-20

38
McDaniel C, Maher P. New ultrastable form of Faujasite. In: Molecular Sieves. London: Society of Chemical Industry, 1968, 186–194

39
Hansford R C, Ward J W. The nature of active sites on zeolites: VII. Relative activities of crystalline and amorphous alumino-silicates. Journal of Catalysis, 1969, 13(3): 316–320

DOI

40
Kerr G T. Chemistry of crystalline aluminosilicates. VI. Preparation and properties of ultrastable hydrogen zeolite Y. Journal of Physical Chemistry, 1969, 73(8): 2780–2782

DOI

41
Kerr G T, Miale J N, Mikovsky R J. Hydrothermally stable catalysts of high activity and methods for their preparation. US Patent, 3 493 519, 1970-02-03

42
Scherzer J. Dealuminated faujasite-type structures with SiO2Al2O3 ratios over 100. Journal of Catalysis, 1978, 54(2): 285–288

DOI

43
Tsutsumi K, Kajiwara H, Takahashi H. Characteristic studies on dealumination of faujasite-type zeolite. Bulletin of the Chemical Society of Japan, 1974, 47(4): 801–805

DOI

44
Lohse U, Engelhardt G, Patzelova V. Adsorption of n-hexane on H-Y and on deep bed treated dealuminated Y zeolites. Zeolites, 1984, 4(2): 163–167

DOI

45
Zukal A, Patzelova V, Lohse U. Secondary porous structure of dealuminated Y zeolites. Zeolites, 1986, 6(2): 133–136

DOI

46
Lohse U, Stach H, Thamm H, Schirmer W, Isirikjan A, Regent N, Dubinin M. Dealuminated molecular sieves of the type Y determination of the micron secondary pore volume by adsorption measurements. Zeitschrift fur Anorganische und Allgemeine Chemie, 1980, 460(1): 179–190 (in German)

DOI

47
Skeels G, Breck D. Zeolite chemistry V-substitution of silicon for aluminum in zeolites via reaction with aqueous fluorosilicate. In: Proceedings of 6th International Zeolite Conference. London: Butterworth & Co., Ltd., 1984, 87

48
Beyer H K, Belenykaja I. A new method for the dealumination of faujasite-type zeolites. In: Studies in Surface Science and Catalysis. 5th ed. Amsterdam: Elsevier, 1980, 203–210

49
Qin Z, Cychosz K A, Melinte G, El Siblani H, Gilson J P, Thommes M, Fernandez C, Mintova S, Ersen O, Valtchev V. Opening the cages of faujasite-type zeolite. Journal of the American Chemical Society, 2017, 139(48): 17273–17276

DOI

50
de Jong K P, Zečević J, Friedrich H, de Jongh P E, Bulut M, Van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie, 2010, 122(52): 10272–10276

DOI

51
Van Mao R. Selective removal of silicon from zeolite frameworks using sodium carbonate. Journal of Materials Chemistry, 1994, 4(4): 605–610

DOI

52
García-Martínez J, Johnson M, Valla J, Li K, Ying J Y. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987–994

DOI

53
Tao Y, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976

DOI

54
Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393

DOI

55
Zhang J, Bai S, Chen Z, Wang Y, Dong L, Zheng H, Cai F, Hong M. Core-shell zeolite Y with ant-nest like hollow interior constructed by amino acids and enhanced catalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(39): 20757–20764

DOI

56
Zhao J, Yin Y, Li Y, Chen W, Liu B. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chemical Engineering Journal, 2016, 284: 405–411

DOI

57
Liu S, Cao X, Li L, Li C, Ji Y, Xiao F S. Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 318(1): 269–274

DOI

58
Khaleel M, Wagner A J, Mkhoyan K A, Tsapatsis M. On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angewandte Chemie International Edition, 2014, 53(36): 9456–9461

DOI

59
Delprato F, Delmotte L, Guth J, Huve L. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 1990, 10(6): 546–552

DOI

60
Matsukata M, Kizu K, Ogura M, Kikuchi E. Synthesis of EMT zeolite by a steam-assisted crystallization method using crown ether as a structure-directing agent. Crystal Growth & Design, 2001, 1(6): 509–516

DOI

61
Terasaki O, Ohsuna T, Alfredsson V, Bovin J, Watanabe D, Carr S W, Anderson M W. Observation of spatially correlated intergrowths of faujasitic polytypes and the pure end members by high-resolution electron microscopy. Chemistry of Materials, 1993, 5(4): 452–458

DOI

62
Treacy M M J, Newsam J M, Beyerlein R A, Leonowicz M E, Vaughan D E W. The structure of zeolite CSZ-1 interpreted as a rhombohedrally distorted variant of the faujasite framework. Journal of the Chemical Society. Chemical Communications, 1986, (15): 1211–1213

DOI

63
Julius C. ZSM-2 zeolite and preparation thereof. US Patent, 3 411 874, 1968-11-19

64
Kokotailo G T, Ciric J. Synthesis and structural features of zeolite ZSM-3. In: Molecular Sieve Zeolites-I. Washington, D.C.: American Chemical Society, 1974, 109–121

65
Newsam J, Treacy M, Vaughan D, Strohmaier K, Mortier W. The structure of zeolite ZSM-20: Mixed cubic and hexagonal stackings of faujasite sheets. Journal of the Chemical Society. Chemical Communications, 1989, (8): 493–495

DOI

66
Wang B, Dutta P K. Synthesis method for introducing mesoporosity in a faujasitic-like zeolite system from a sodium aluminosilicate gel composition. Microporous and Mesoporous Materials, 2017, 239: 195–208

DOI

67
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723

DOI

68
Cho K, Cho H S, De Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673

DOI

69
Shanbhag G V, Choi M, Kim J, Ryoo R. Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264(1): 88–92

DOI

70
Liu L, Wang H, Wang R, Sun C, Zeng S, Jiang S, Zhang D, Zhu L, Zhang Z. N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Advances, 2014, 4(41): 21301–21305

DOI

71
Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617

DOI

72
Rimer J, Kumar M, Li R, Lupulescu A, Oleksiak M. Tailoring the physicochemical properties of zeolite catalysts. Catalysis Science & Technology, 2014, 4(11): 3762–3771

DOI

73
Rioland G, Albrecht S, Josien L, Vidal L, Daou T J. The influence of the nature of organosilane surfactants and their concentration on the formation of hierarchical FAU-type zeolite nanosheets. New Journal of Chemistry, 2015, 39(4): 2675–2681

DOI

74
Wang L, Sang S, Meng S, Zhang Y, Qi Y, Liu Z. Direct synthesis of Zn-ZSM-5 with novel morphology. Materials Letters, 2007, 61(8-9): 1675–1678

DOI

75
Inayat A, Schneider C, Schwieger W. Organic-free synthesis of layer-like FAU-type zeolites. Chemical Communications, 2015, 51(2): 279–281

DOI

76
Fu X, Sheng X, Zhou Y, Fu Z, Zhao S, Zhang Z, Zhang Y. One-step synthesis of hierarchical aluminosilicates using alkoxy-functionalized ionic liquid as a novel template. New Journal of Chemistry, 2016, 40(7): 6036–6045

DOI

77
Hanif N, Anderson M W, Alfredsson V, Terasaki O. The effect of stirring on the synthesis of intergrowths of zeolite Y polymorphs. Physical Chemistry Chemical Physics, 2000, 2(14): 3349–3357

DOI

78
Anderson M W, Pachis K S, Prébin F, Carr S W, Terasaki O, Ohsuna T, Alfreddson V. Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. Journal of the Chemical Society. Chemical Communications, 1991, (23): 1660–1664

DOI

79
Arhancet J P, Davis M E. Systematic synthesis of zeolites that contain cubic and hexagonal stackings of faujasite sheets. Chemistry of Materials, 1991, 3(4): 567–569

DOI

80
Burkett S L, Davis M E. Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Materials, 1993, 1(4): 265–282

DOI

81
Belandria L, Gonzalez C, Aguirre F, Sosa E, Uzcátegui A, González G, Brito J, Gonzalez-Cortes S, Imbert F. Synthesis, characterization of FAU/EMT intergrowths and its catalytic performance in n-pentane hydroisomerization reaction. Journal of Molecular Catalysis A Chemical, 2008, 281(1-2): 164–172

DOI

82
Lechert H, Kacirek H. Investigations on the crystallization of X-type zeolites. Zeolites, 1991, 11(7): 720–728

DOI

83
Ginter A T B, Radke C J. Molecular sieves. In: Synthesis of Microporous Materials. New York: Van Nostrand Reinhold, 1992

84
Khaleel M, Xu W, Lesch D A, Tsapatsis M. Combining pre-and post-nucleation Trajectories for the synthesis of high FAU-content Faujasite nano-crystals from organic-free sols. Chemistry of Materials, 2016, 28(12): 4204–4213

DOI

85
Tang T, Zhang L, Dong H, Fang Z, Fu W, Yu Q, Tang T. Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Advances, 2017, 7(13): 7711–7717

DOI

86
Jia X, Han L, Ma Y, Che S. Additive-free synthesis of mesoporous FAU-type zeolite with intergrown structure. Science China Materials, 2018, 61(8): 1095–1100

DOI

87
Du Y, Kong Q, Gao Z, Wang Z, Zheng J, Qin B, Pan M, Li W, Li R. Flower-like hierarchical Y with dramatically increased external surface: A potential catalyst contributing to improving pre-cracking for bulky reactant molecules. Industrial & Engineering Chemistry Research, 2018, 57(22): 7395–7403

DOI

88
Liu L, Wang H, Wang Z, Zhu L, Huang L, Yu L, Fan J, Yao Y, Liu S, Zou J, Zeng X. Evolving mechanism of organotemplate-free hierarchical FAU zeolites with house-of-card-like structures. Chemical Communications, 2018, 54(70): 9821–9824

DOI

89
Gaber S, Gaber D, Ismail I, Alhassan S M, Khaleel M. Additive-free synthesis of house-of-card faujasite zeolite by utilizing aluminosilicate gel memory. CrystEngComm, 2019, 21(11): 1685–1690

DOI

90
Nik O G, Nohair B, Kaliaguine S. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties. Microporous and Mesoporous Materials, 2011, 143(1): 221–229

DOI

91
Ferdov S. FAU-type zeolite nanosheets from additives-free system. Microporous and Mesoporous Materials, 2017, 242: 59–62

DOI

92
Huang Y, Wang K, Dong D, Li D, Hill M R, Hill A J, Wang H. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous and Mesoporous Materials, 2010, 127(3): 167–175

DOI

93
Mather P, Pilato J. Preparation of zeolites. US Patent, 3 808 326, 1974-04-30

94
Khajavi S, Kapteijn F, Jansen J C. Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation. Journal of Membrane Science, 2007, 299(1-2): 63–72

DOI

95
Weitkamp J, Schumacher R. Synthesis, dealumination and physico-chemical characterization of zeolite EMT. In: Proceedings of 9th International Zeolite Conference. Boston: Butterworth-Heinemann, 1993, 353–360

96
Breck D. Zeolite Molecular Sieves: Structure, Chemistry, and Use. 99th ed. New York: John Wiley and Sons Inc., 1974, 1–784

97
Scardi P, Leoni M, Beyerlein K R. On the modelling of the powder pattern from a nanocrystalline material. Zeitschrift für Kristallographie. Crystalline Materials, 2011, 226(12): 924–933

DOI

98
Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9-10): 1051–1069

DOI

Outlines

/