Layer-like FAU-type zeolites: A comparative view on different preparation routes

Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat

PDF(4920 KB)
PDF(4920 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (2) : 127-142. DOI: 10.1007/s11705-019-1883-3
REVIEW ARTICLE
REVIEW ARTICLE

Layer-like FAU-type zeolites: A comparative view on different preparation routes

Author information +
History +

Abstract

The creation of intergrown layer-like zeolite crystals is one route to form hierarchical zeolites. Faujasite-type (FAU-type) zeolites are among the industrially most important zeolites and the implementation of hierarchical porosity is a promising way to optimise their catalytic and adsorptive performance. After a short general survey into routes for the preparation of hierarchical pore systems in FAU, we will review the currently existing strategies for the synthesis of FAU with layer-like morphology. Those strategies are mainly based on the presence of morphology modifying agents in the synthesis mixture. However, a very recent approach is the synthesis of layer-like FAU-type zeolite crystals assembled in an intergrown manner in the absence of such additives, just by finely adjusting the crystallization temperature. This additive-free preparation route for layer-like FAU, which appears very attractive from an ecological as well as economic point of view, is highlighted in this review. Concluding, a comparison, including powder X-ray diffraction, scanning and transmission electron microscopy, nitrogen physisorption and elemental analysis, between conventional FAU and three layer-like FAU obtained by different synthesis routes was carried out to show the structural, morphological and textural differences and similarities of these materials.

Graphical abstract

Keywords

FAU / hierarchical zeolite / layer-like morphology

Cite this article

Download citation ▾
Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat. Layer-like FAU-type zeolites: A comparative view on different preparation routes. Front. Chem. Sci. Eng., 2020, 14(2): 127‒142 https://doi.org/10.1007/s11705-019-1883-3

References

[1]
Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161
CrossRef Google scholar
[2]
Bathen D, Breitbach M. Technische Adsorbentien. In: Adsorptionstechnik. Berlin: Springer International Publishing, 2001, 13–48
[3]
Mckee D W. Separation of an oxygen-nitrogen mixture. US Patent, 3 140 932, 1964-07-14
[4]
McDaniel C V, Maher P K. Stabilized zeolites. US Patent, 3 449 070, 1969-06-10
[5]
Baker R W, Ciapetta F G, Wilson C P Jr, Maher P K. Process for preparing molecular sieve containing cracking catalysts. US Patent, 3 425 956, 1969-02-04
[6]
Dobres R M. Hydrocracking catalyst and process. US Patent, 3 431 196, 1969-03-04
[7]
Seubold F H. Hydrocracking process and catalyst. US Patent, 2 983 670, 1961-05-09
[8]
Milton R M. Molecular sieve adsorbents. US Patent, 2 882 244, 1959-04-14
[9]
Breck D W. Crystalline zeolite Y. US Patent, 3 130 007, 1964-04-21
[10]
Kühl G H. Crystallization of low-silica faujasite (SiO2/Al2O3~ 2.0). Zeolites, 1987, 7(5): 451–457
CrossRef Google scholar
[11]
ExxonMobil Oil Corp. Manufacture of low silica faujasite. GB Patent, 1 580 928, 1980-12-10
[12]
Auerbach S M, Henson N J, Cheetham A K, Metiu H I. Transport theory for cationic zeolites: Diffusion of benzene in Na-Y. Journal of Physical Chemistry, 1995, 99(26): 10600–10608
CrossRef Google scholar
[13]
Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614
CrossRef Google scholar
[14]
Post M F M. Diffusion in zeolite molecular sieves. In: Studies in Surface Science and Catalysis. 58th ed. Amsterdam: Elsevier, 1991, 391–443
[15]
Mehlhorn D, Inayat A, Schwieger W, Valiullin R, Kärger J. Probing mass transfer in mesoporous Faujasite-type zeolite nanosheet assemblies. ChemPhysChem, 2014, 15(8): 1681–1686
CrossRef Google scholar
[16]
Mehlhorn D, Valiullin R, Kärger J, Cho K, Ryoo R. Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem, 2012, 13(6): 1495–1499
CrossRef Google scholar
[17]
Christensen C H, Johannsen K, Toernqvist E, Schmidt I, Topsøe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(3-4): 117–122
CrossRef Google scholar
[18]
Groen J C, Zhu W, Brouwer S, Huynink S J, Kapteijn F, Moulijn J A, Pérez-Ramírez J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. Journal of the American Chemical Society, 2007, 129(2): 355–360
CrossRef Google scholar
[19]
Kärger J, Valiullin R. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chemical Society Reviews, 2013, 42(9): 4172–4197
CrossRef Google scholar
[20]
Verboekend D, Nuttens N, Locus R, Van Aelst J, Verolme P, Groen J, Pérez-Ramírez J, Sels B. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45(12): 3331–3352
CrossRef Google scholar
[21]
Su B-L, Sanchez C, Yang X-Y. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012, 1–678
[22]
Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928
CrossRef Google scholar
[23]
Verboekend D, Pérez-Ramírez J. Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 2011, 1(6): 879–890
CrossRef Google scholar
[24]
Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376
CrossRef Google scholar
[25]
Schwieger W, Machoke A G, Reiprich B, Weissenberger T, Selvam T, Hartmann M. Hierarchical zeolites. In: Zeolites in Catalysis: Properties and Applications. Cambridge: The Royal Society of Chemistry, 2017, 103–145
[26]
Roth W J, Gil B, Makowski W, Marszalek B, Eliášová P. Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45(12): 3400–3438
CrossRef Google scholar
[27]
Přech J, Pizarro P, Serrano D, Čejka J. From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306
CrossRef Google scholar
[28]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
CrossRef Google scholar
[29]
Inayat A, Knoke I, Spiecker E, Schwieger W. Assemblies of mesoporous FAU-type zeolite nanosheets. Angewandte Chemie International Edition, 2012, 51(8): 1962–1965
CrossRef Google scholar
[30]
Zhang X, Liu D, Xu D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687
CrossRef Google scholar
[31]
Lupulescu A I, Rimer J D. Tailoring silicalite-1 crystal morphology with molecular modifiers. Angewandte Chemie International Edition, 2012, 51(14): 3345–3349
CrossRef Google scholar
[32]
Bergerhoff G, Koyama H, Nowacki W. On the crystal structure of the minerals from the chabazite and faujasite groups. Cellular and Molecular Life Sciences, 1956, 12(11): 418–419in German)
CrossRef Google scholar
[33]
Bergerhoff G, Baur W H, Nowacki W. Über die kristallstrukturen des faujasits. Neues Jahrbuch für Mineralogie Monatshefte, 1958, 198: 193–200
[34]
Barrer R. The separation of molecules with the help of crystal sieves. Brennstoff-Chemie, 1954, 35: 325–334 (in German)
[35]
Breck D W, Flanigen E. Synthesis and properties of union carbide zeolites L, X and Y. Molecular sieves, 1968: 47–60
[36]
Kerr G T. Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. Journal of Physical Chemistry, 1968, 72(7): 2594–2596
CrossRef Google scholar
[37]
Maher P K, McDaniel C V. Zeolite z-14us and method of preparation thereof. US Patent, 3 293 192, 1966-10-20
[38]
McDaniel C, Maher P. New ultrastable form of Faujasite. In: Molecular Sieves. London: Society of Chemical Industry, 1968, 186–194
[39]
Hansford R C, Ward J W. The nature of active sites on zeolites: VII. Relative activities of crystalline and amorphous alumino-silicates. Journal of Catalysis, 1969, 13(3): 316–320
CrossRef Google scholar
[40]
Kerr G T. Chemistry of crystalline aluminosilicates. VI. Preparation and properties of ultrastable hydrogen zeolite Y. Journal of Physical Chemistry, 1969, 73(8): 2780–2782
CrossRef Google scholar
[41]
Kerr G T, Miale J N, Mikovsky R J. Hydrothermally stable catalysts of high activity and methods for their preparation. US Patent, 3 493 519, 1970-02-03
[42]
Scherzer J. Dealuminated faujasite-type structures with SiO2Al2O3 ratios over 100. Journal of Catalysis, 1978, 54(2): 285–288
CrossRef Google scholar
[43]
Tsutsumi K, Kajiwara H, Takahashi H. Characteristic studies on dealumination of faujasite-type zeolite. Bulletin of the Chemical Society of Japan, 1974, 47(4): 801–805
CrossRef Google scholar
[44]
Lohse U, Engelhardt G, Patzelova V. Adsorption of n-hexane on H-Y and on deep bed treated dealuminated Y zeolites. Zeolites, 1984, 4(2): 163–167
CrossRef Google scholar
[45]
Zukal A, Patzelova V, Lohse U. Secondary porous structure of dealuminated Y zeolites. Zeolites, 1986, 6(2): 133–136
CrossRef Google scholar
[46]
Lohse U, Stach H, Thamm H, Schirmer W, Isirikjan A, Regent N, Dubinin M. Dealuminated molecular sieves of the type Y determination of the micron secondary pore volume by adsorption measurements. Zeitschrift fur Anorganische und Allgemeine Chemie, 1980, 460(1): 179–190 (in German)
CrossRef Google scholar
[47]
Skeels G, Breck D. Zeolite chemistry V-substitution of silicon for aluminum in zeolites via reaction with aqueous fluorosilicate. In: Proceedings of 6th International Zeolite Conference. London: Butterworth & Co., Ltd., 1984, 87
[48]
Beyer H K, Belenykaja I. A new method for the dealumination of faujasite-type zeolites. In: Studies in Surface Science and Catalysis. 5th ed. Amsterdam: Elsevier, 1980, 203–210
[49]
Qin Z, Cychosz K A, Melinte G, El Siblani H, Gilson J P, Thommes M, Fernandez C, Mintova S, Ersen O, Valtchev V. Opening the cages of faujasite-type zeolite. Journal of the American Chemical Society, 2017, 139(48): 17273–17276
CrossRef Google scholar
[50]
de Jong K P, Zečević J, Friedrich H, de Jongh P E, Bulut M, Van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie, 2010, 122(52): 10272–10276
CrossRef Google scholar
[51]
Van Mao R. Selective removal of silicon from zeolite frameworks using sodium carbonate. Journal of Materials Chemistry, 1994, 4(4): 605–610
CrossRef Google scholar
[52]
García-Martínez J, Johnson M, Valla J, Li K, Ying J Y. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987–994
CrossRef Google scholar
[53]
Tao Y, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976
CrossRef Google scholar
[54]
Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393
CrossRef Google scholar
[55]
Zhang J, Bai S, Chen Z, Wang Y, Dong L, Zheng H, Cai F, Hong M. Core-shell zeolite Y with ant-nest like hollow interior constructed by amino acids and enhanced catalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(39): 20757–20764
CrossRef Google scholar
[56]
Zhao J, Yin Y, Li Y, Chen W, Liu B. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chemical Engineering Journal, 2016, 284: 405–411
CrossRef Google scholar
[57]
Liu S, Cao X, Li L, Li C, Ji Y, Xiao F S. Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 318(1): 269–274
CrossRef Google scholar
[58]
Khaleel M, Wagner A J, Mkhoyan K A, Tsapatsis M. On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angewandte Chemie International Edition, 2014, 53(36): 9456–9461
CrossRef Google scholar
[59]
Delprato F, Delmotte L, Guth J, Huve L. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 1990, 10(6): 546–552
CrossRef Google scholar
[60]
Matsukata M, Kizu K, Ogura M, Kikuchi E. Synthesis of EMT zeolite by a steam-assisted crystallization method using crown ether as a structure-directing agent. Crystal Growth & Design, 2001, 1(6): 509–516
CrossRef Google scholar
[61]
Terasaki O, Ohsuna T, Alfredsson V, Bovin J, Watanabe D, Carr S W, Anderson M W. Observation of spatially correlated intergrowths of faujasitic polytypes and the pure end members by high-resolution electron microscopy. Chemistry of Materials, 1993, 5(4): 452–458
CrossRef Google scholar
[62]
Treacy M M J, Newsam J M, Beyerlein R A, Leonowicz M E, Vaughan D E W. The structure of zeolite CSZ-1 interpreted as a rhombohedrally distorted variant of the faujasite framework. Journal of the Chemical Society. Chemical Communications, 1986, (15): 1211–1213
CrossRef Google scholar
[63]
Julius C. ZSM-2 zeolite and preparation thereof. US Patent, 3 411 874, 1968-11-19
[64]
Kokotailo G T, Ciric J. Synthesis and structural features of zeolite ZSM-3. In: Molecular Sieve Zeolites-I. Washington, D.C.: American Chemical Society, 1974, 109–121
[65]
Newsam J, Treacy M, Vaughan D, Strohmaier K, Mortier W. The structure of zeolite ZSM-20: Mixed cubic and hexagonal stackings of faujasite sheets. Journal of the Chemical Society. Chemical Communications, 1989, (8): 493–495
CrossRef Google scholar
[66]
Wang B, Dutta P K. Synthesis method for introducing mesoporosity in a faujasitic-like zeolite system from a sodium aluminosilicate gel composition. Microporous and Mesoporous Materials, 2017, 239: 195–208
CrossRef Google scholar
[67]
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
CrossRef Google scholar
[68]
Cho K, Cho H S, De Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673
CrossRef Google scholar
[69]
Shanbhag G V, Choi M, Kim J, Ryoo R. Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264(1): 88–92
CrossRef Google scholar
[70]
Liu L, Wang H, Wang R, Sun C, Zeng S, Jiang S, Zhang D, Zhu L, Zhang Z. N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Advances, 2014, 4(41): 21301–21305
CrossRef Google scholar
[71]
Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617
CrossRef Google scholar
[72]
Rimer J, Kumar M, Li R, Lupulescu A, Oleksiak M. Tailoring the physicochemical properties of zeolite catalysts. Catalysis Science & Technology, 2014, 4(11): 3762–3771
CrossRef Google scholar
[73]
Rioland G, Albrecht S, Josien L, Vidal L, Daou T J. The influence of the nature of organosilane surfactants and their concentration on the formation of hierarchical FAU-type zeolite nanosheets. New Journal of Chemistry, 2015, 39(4): 2675–2681
CrossRef Google scholar
[74]
Wang L, Sang S, Meng S, Zhang Y, Qi Y, Liu Z. Direct synthesis of Zn-ZSM-5 with novel morphology. Materials Letters, 2007, 61(8-9): 1675–1678
CrossRef Google scholar
[75]
Inayat A, Schneider C, Schwieger W. Organic-free synthesis of layer-like FAU-type zeolites. Chemical Communications, 2015, 51(2): 279–281
CrossRef Google scholar
[76]
Fu X, Sheng X, Zhou Y, Fu Z, Zhao S, Zhang Z, Zhang Y. One-step synthesis of hierarchical aluminosilicates using alkoxy-functionalized ionic liquid as a novel template. New Journal of Chemistry, 2016, 40(7): 6036–6045
CrossRef Google scholar
[77]
Hanif N, Anderson M W, Alfredsson V, Terasaki O. The effect of stirring on the synthesis of intergrowths of zeolite Y polymorphs. Physical Chemistry Chemical Physics, 2000, 2(14): 3349–3357
CrossRef Google scholar
[78]
Anderson M W, Pachis K S, Prébin F, Carr S W, Terasaki O, Ohsuna T, Alfreddson V. Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. Journal of the Chemical Society. Chemical Communications, 1991, (23): 1660–1664
CrossRef Google scholar
[79]
Arhancet J P, Davis M E. Systematic synthesis of zeolites that contain cubic and hexagonal stackings of faujasite sheets. Chemistry of Materials, 1991, 3(4): 567–569
CrossRef Google scholar
[80]
Burkett S L, Davis M E. Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Materials, 1993, 1(4): 265–282
CrossRef Google scholar
[81]
Belandria L, Gonzalez C, Aguirre F, Sosa E, Uzcátegui A, González G, Brito J, Gonzalez-Cortes S, Imbert F. Synthesis, characterization of FAU/EMT intergrowths and its catalytic performance in n-pentane hydroisomerization reaction. Journal of Molecular Catalysis A Chemical, 2008, 281(1-2): 164–172
CrossRef Google scholar
[82]
Lechert H, Kacirek H. Investigations on the crystallization of X-type zeolites. Zeolites, 1991, 11(7): 720–728
CrossRef Google scholar
[83]
Ginter A T B, Radke C J. Molecular sieves. In: Synthesis of Microporous Materials. New York: Van Nostrand Reinhold, 1992
[84]
Khaleel M, Xu W, Lesch D A, Tsapatsis M. Combining pre-and post-nucleation Trajectories for the synthesis of high FAU-content Faujasite nano-crystals from organic-free sols. Chemistry of Materials, 2016, 28(12): 4204–4213
CrossRef Google scholar
[85]
Tang T, Zhang L, Dong H, Fang Z, Fu W, Yu Q, Tang T. Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Advances, 2017, 7(13): 7711–7717
CrossRef Google scholar
[86]
Jia X, Han L, Ma Y, Che S. Additive-free synthesis of mesoporous FAU-type zeolite with intergrown structure. Science China Materials, 2018, 61(8): 1095–1100
CrossRef Google scholar
[87]
Du Y, Kong Q, Gao Z, Wang Z, Zheng J, Qin B, Pan M, Li W, Li R. Flower-like hierarchical Y with dramatically increased external surface: A potential catalyst contributing to improving pre-cracking for bulky reactant molecules. Industrial & Engineering Chemistry Research, 2018, 57(22): 7395–7403
CrossRef Google scholar
[88]
Liu L, Wang H, Wang Z, Zhu L, Huang L, Yu L, Fan J, Yao Y, Liu S, Zou J, Zeng X. Evolving mechanism of organotemplate-free hierarchical FAU zeolites with house-of-card-like structures. Chemical Communications, 2018, 54(70): 9821–9824
CrossRef Google scholar
[89]
Gaber S, Gaber D, Ismail I, Alhassan S M, Khaleel M. Additive-free synthesis of house-of-card faujasite zeolite by utilizing aluminosilicate gel memory. CrystEngComm, 2019, 21(11): 1685–1690
CrossRef Google scholar
[90]
Nik O G, Nohair B, Kaliaguine S. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties. Microporous and Mesoporous Materials, 2011, 143(1): 221–229
CrossRef Google scholar
[91]
Ferdov S. FAU-type zeolite nanosheets from additives-free system. Microporous and Mesoporous Materials, 2017, 242: 59–62
CrossRef Google scholar
[92]
Huang Y, Wang K, Dong D, Li D, Hill M R, Hill A J, Wang H. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous and Mesoporous Materials, 2010, 127(3): 167–175
CrossRef Google scholar
[93]
Mather P, Pilato J. Preparation of zeolites. US Patent, 3 808 326, 1974-04-30
[94]
Khajavi S, Kapteijn F, Jansen J C. Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation. Journal of Membrane Science, 2007, 299(1-2): 63–72
CrossRef Google scholar
[95]
Weitkamp J, Schumacher R. Synthesis, dealumination and physico-chemical characterization of zeolite EMT. In: Proceedings of 9th International Zeolite Conference. Boston: Butterworth-Heinemann, 1993, 353–360
[96]
Breck D. Zeolite Molecular Sieves: Structure, Chemistry, and Use. 99th ed. New York: John Wiley and Sons Inc., 1974, 1–784
[97]
Scardi P, Leoni M, Beyerlein K R. On the modelling of the powder pattern from a nanocrystalline material. Zeitschrift für Kristallographie. Crystalline Materials, 2011, 226(12): 924–933
CrossRef Google scholar
[98]
Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9-10): 1051–1069
CrossRef Google scholar

Acknowledgement

The authors gratefully acknowledge financial support from the Bavarian Research Foundation (BFS), from the State of Bavaria in frame of the projekt BTHA- FV-17 and the support of the Cluster of Excellence “Engineering of Advanced Materials” at FAU Erlangen-Nürnberg founded by the DFG. We thank Professor Michael Tsapatsis and his co-workers, University of Minnesota, for their kind support of the TEM measurements. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from NSF through the MRSEC program.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4920 KB)

Accesses

Citations

Detail

Sections
Recommended

/