Layer-like FAU-type zeolites: A comparative view on different preparation routes
Bastian Reiprich, Tobias Weissenberger, Wilhelm Schwieger, Alexandra Inayat
Layer-like FAU-type zeolites: A comparative view on different preparation routes
The creation of intergrown layer-like zeolite crystals is one route to form hierarchical zeolites. Faujasite-type (FAU-type) zeolites are among the industrially most important zeolites and the implementation of hierarchical porosity is a promising way to optimise their catalytic and adsorptive performance. After a short general survey into routes for the preparation of hierarchical pore systems in FAU, we will review the currently existing strategies for the synthesis of FAU with layer-like morphology. Those strategies are mainly based on the presence of morphology modifying agents in the synthesis mixture. However, a very recent approach is the synthesis of layer-like FAU-type zeolite crystals assembled in an intergrown manner in the absence of such additives, just by finely adjusting the crystallization temperature. This additive-free preparation route for layer-like FAU, which appears very attractive from an ecological as well as economic point of view, is highlighted in this review. Concluding, a comparison, including powder X-ray diffraction, scanning and transmission electron microscopy, nitrogen physisorption and elemental analysis, between conventional FAU and three layer-like FAU obtained by different synthesis routes was carried out to show the structural, morphological and textural differences and similarities of these materials.
FAU / hierarchical zeolite / layer-like morphology
[1] |
Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry. Topics in Catalysis, 2009, 52(9): 1131–1161
CrossRef
Google scholar
|
[2] |
Bathen D, Breitbach M. Technische Adsorbentien. In: Adsorptionstechnik. Berlin: Springer International Publishing, 2001, 13–48
|
[3] |
Mckee D W. Separation of an oxygen-nitrogen mixture. US Patent, 3 140 932, 1964-07-14
|
[4] |
McDaniel C V, Maher P K. Stabilized zeolites. US Patent, 3 449 070, 1969-06-10
|
[5] |
Baker R W, Ciapetta F G, Wilson C P Jr, Maher P K. Process for preparing molecular sieve containing cracking catalysts. US Patent, 3 425 956, 1969-02-04
|
[6] |
Dobres R M. Hydrocracking catalyst and process. US Patent, 3 431 196, 1969-03-04
|
[7] |
Seubold F H. Hydrocracking process and catalyst. US Patent, 2 983 670, 1961-05-09
|
[8] |
Milton R M. Molecular sieve adsorbents. US Patent, 2 882 244, 1959-04-14
|
[9] |
Breck D W. Crystalline zeolite Y. US Patent, 3 130 007, 1964-04-21
|
[10] |
Kühl G H. Crystallization of low-silica faujasite (SiO2/Al2O3~ 2.0). Zeolites, 1987, 7(5): 451–457
CrossRef
Google scholar
|
[11] |
ExxonMobil Oil Corp. Manufacture of low silica faujasite. GB Patent, 1 580 928, 1980-12-10
|
[12] |
Auerbach S M, Henson N J, Cheetham A K, Metiu H I. Transport theory for cationic zeolites: Diffusion of benzene in Na-Y. Journal of Physical Chemistry, 1995, 99(26): 10600–10608
CrossRef
Google scholar
|
[13] |
Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions. Chemical Reviews, 1995, 95(3): 559–614
CrossRef
Google scholar
|
[14] |
Post M F M. Diffusion in zeolite molecular sieves. In: Studies in Surface Science and Catalysis. 58th ed. Amsterdam: Elsevier, 1991, 391–443
|
[15] |
Mehlhorn D, Inayat A, Schwieger W, Valiullin R, Kärger J. Probing mass transfer in mesoporous Faujasite-type zeolite nanosheet assemblies. ChemPhysChem, 2014, 15(8): 1681–1686
CrossRef
Google scholar
|
[16] |
Mehlhorn D, Valiullin R, Kärger J, Cho K, Ryoo R. Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem, 2012, 13(6): 1495–1499
CrossRef
Google scholar
|
[17] |
Christensen C H, Johannsen K, Toernqvist E, Schmidt I, Topsøe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(3-4): 117–122
CrossRef
Google scholar
|
[18] |
Groen J C, Zhu W, Brouwer S, Huynink S J, Kapteijn F, Moulijn J A, Pérez-Ramírez J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication. Journal of the American Chemical Society, 2007, 129(2): 355–360
CrossRef
Google scholar
|
[19] |
Kärger J, Valiullin R. Mass transfer in mesoporous materials: The benefit of microscopic diffusion measurement. Chemical Society Reviews, 2013, 42(9): 4172–4197
CrossRef
Google scholar
|
[20] |
Verboekend D, Nuttens N, Locus R, Van Aelst J, Verolme P, Groen J, Pérez-Ramírez J, Sels B. Synthesis, characterisation, and catalytic evaluation of hierarchical faujasite zeolites: Milestones, challenges, and future directions. Chemical Society Reviews, 2016, 45(12): 3331–3352
CrossRef
Google scholar
|
[21] |
Su B-L, Sanchez C, Yang X-Y. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2012, 1–678
|
[22] |
Verboekend D, Vilé G, Pérez-Ramírez J. Hierarchical Y and USY zeolites designed by post-synthetic strategies. Advanced Functional Materials, 2012, 22(5): 916–928
CrossRef
Google scholar
|
[23] |
Verboekend D, Pérez-Ramírez J. Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 2011, 1(6): 879–890
CrossRef
Google scholar
|
[24] |
Schwieger W, Machoke A G, Weissenberger T, Inayat A, Selvam T, Klumpp M, Inayat A. Hierarchy concepts: Classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chemical Society Reviews, 2016, 45(12): 3353–3376
CrossRef
Google scholar
|
[25] |
Schwieger W, Machoke A G, Reiprich B, Weissenberger T, Selvam T, Hartmann M. Hierarchical zeolites. In: Zeolites in Catalysis: Properties and Applications. Cambridge: The Royal Society of Chemistry, 2017, 103–145
|
[26] |
Roth W J, Gil B, Makowski W, Marszalek B, Eliášová P. Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45(12): 3400–3438
CrossRef
Google scholar
|
[27] |
Přech J, Pizarro P, Serrano D, Čejka J. From 3D to 2D zeolite catalytic materials. Chemical Society Reviews, 2018, 47(22): 8263–8306
CrossRef
Google scholar
|
[28] |
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
CrossRef
Google scholar
|
[29] |
Inayat A, Knoke I, Spiecker E, Schwieger W. Assemblies of mesoporous FAU-type zeolite nanosheets. Angewandte Chemie International Edition, 2012, 51(8): 1962–1965
CrossRef
Google scholar
|
[30] |
Zhang X, Liu D, Xu D, Asahina S, Cychosz K A, Agrawal K V, Al Wahedi Y, Bhan A, Al Hashimi S, Terasaki O, Thommes M, Tsapatsis M. Synthesis of self-pillared zeolite nanosheets by repetitive branching. Science, 2012, 336(6089): 1684–1687
CrossRef
Google scholar
|
[31] |
Lupulescu A I, Rimer J D. Tailoring silicalite-1 crystal morphology with molecular modifiers. Angewandte Chemie International Edition, 2012, 51(14): 3345–3349
CrossRef
Google scholar
|
[32] |
Bergerhoff G, Koyama H, Nowacki W. On the crystal structure of the minerals from the chabazite and faujasite groups. Cellular and Molecular Life Sciences, 1956, 12(11): 418–419in German)
CrossRef
Google scholar
|
[33] |
Bergerhoff G, Baur W H, Nowacki W. Über die kristallstrukturen des faujasits. Neues Jahrbuch für Mineralogie Monatshefte, 1958, 198: 193–200
|
[34] |
Barrer R. The separation of molecules with the help of crystal sieves. Brennstoff-Chemie, 1954, 35: 325–334 (in German)
|
[35] |
Breck D W, Flanigen E. Synthesis and properties of union carbide zeolites L, X and Y. Molecular sieves, 1968: 47–60
|
[36] |
Kerr G T. Chemistry of crystalline aluminosilicates. V. Preparation of aluminum-deficient faujasites. Journal of Physical Chemistry, 1968, 72(7): 2594–2596
CrossRef
Google scholar
|
[37] |
Maher P K, McDaniel C V. Zeolite z-14us and method of preparation thereof. US Patent, 3 293 192, 1966-10-20
|
[38] |
McDaniel C, Maher P. New ultrastable form of Faujasite. In: Molecular Sieves. London: Society of Chemical Industry, 1968, 186–194
|
[39] |
Hansford R C, Ward J W. The nature of active sites on zeolites: VII. Relative activities of crystalline and amorphous alumino-silicates. Journal of Catalysis, 1969, 13(3): 316–320
CrossRef
Google scholar
|
[40] |
Kerr G T. Chemistry of crystalline aluminosilicates. VI. Preparation and properties of ultrastable hydrogen zeolite Y. Journal of Physical Chemistry, 1969, 73(8): 2780–2782
CrossRef
Google scholar
|
[41] |
Kerr G T, Miale J N, Mikovsky R J. Hydrothermally stable catalysts of high activity and methods for their preparation. US Patent, 3 493 519, 1970-02-03
|
[42] |
Scherzer J. Dealuminated faujasite-type structures with SiO2Al2O3 ratios over 100. Journal of Catalysis, 1978, 54(2): 285–288
CrossRef
Google scholar
|
[43] |
Tsutsumi K, Kajiwara H, Takahashi H. Characteristic studies on dealumination of faujasite-type zeolite. Bulletin of the Chemical Society of Japan, 1974, 47(4): 801–805
CrossRef
Google scholar
|
[44] |
Lohse U, Engelhardt G, Patzelova V. Adsorption of n-hexane on H-Y and on deep bed treated dealuminated Y zeolites. Zeolites, 1984, 4(2): 163–167
CrossRef
Google scholar
|
[45] |
Zukal A, Patzelova V, Lohse U. Secondary porous structure of dealuminated Y zeolites. Zeolites, 1986, 6(2): 133–136
CrossRef
Google scholar
|
[46] |
Lohse U, Stach H, Thamm H, Schirmer W, Isirikjan A, Regent N, Dubinin M. Dealuminated molecular sieves of the type Y determination of the micron secondary pore volume by adsorption measurements. Zeitschrift fur Anorganische und Allgemeine Chemie, 1980, 460(1): 179–190 (in German)
CrossRef
Google scholar
|
[47] |
Skeels G, Breck D. Zeolite chemistry V-substitution of silicon for aluminum in zeolites via reaction with aqueous fluorosilicate. In: Proceedings of 6th International Zeolite Conference. London: Butterworth & Co., Ltd., 1984, 87
|
[48] |
Beyer H K, Belenykaja I. A new method for the dealumination of faujasite-type zeolites. In: Studies in Surface Science and Catalysis. 5th ed. Amsterdam: Elsevier, 1980, 203–210
|
[49] |
Qin Z, Cychosz K A, Melinte G, El Siblani H, Gilson J P, Thommes M, Fernandez C, Mintova S, Ersen O, Valtchev V. Opening the cages of faujasite-type zeolite. Journal of the American Chemical Society, 2017, 139(48): 17273–17276
CrossRef
Google scholar
|
[50] |
de Jong K P, Zečević J, Friedrich H, de Jongh P E, Bulut M, Van Donk S, Kenmogne R, Finiels A, Hulea V, Fajula F. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts. Angewandte Chemie, 2010, 122(52): 10272–10276
CrossRef
Google scholar
|
[51] |
Van Mao R. Selective removal of silicon from zeolite frameworks using sodium carbonate. Journal of Materials Chemistry, 1994, 4(4): 605–610
CrossRef
Google scholar
|
[52] |
García-Martínez J, Johnson M, Valla J, Li K, Ying J Y. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987–994
CrossRef
Google scholar
|
[53] |
Tao Y, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976
CrossRef
Google scholar
|
[54] |
Chen H, Wydra J, Zhang X, Lee P S, Wang Z, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393
CrossRef
Google scholar
|
[55] |
Zhang J, Bai S, Chen Z, Wang Y, Dong L, Zheng H, Cai F, Hong M. Core-shell zeolite Y with ant-nest like hollow interior constructed by amino acids and enhanced catalytic activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(39): 20757–20764
CrossRef
Google scholar
|
[56] |
Zhao J, Yin Y, Li Y, Chen W, Liu B. Synthesis and characterization of mesoporous zeolite Y by using block copolymers as templates. Chemical Engineering Journal, 2016, 284: 405–411
CrossRef
Google scholar
|
[57] |
Liu S, Cao X, Li L, Li C, Ji Y, Xiao F S. Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 318(1): 269–274
CrossRef
Google scholar
|
[58] |
Khaleel M, Wagner A J, Mkhoyan K A, Tsapatsis M. On the rotational intergrowth of hierarchical FAU/EMT zeolites. Angewandte Chemie International Edition, 2014, 53(36): 9456–9461
CrossRef
Google scholar
|
[59] |
Delprato F, Delmotte L, Guth J, Huve L. Synthesis of new silica-rich cubic and hexagonal faujasites using crown-etherbased supramolecules as templates. Zeolites, 1990, 10(6): 546–552
CrossRef
Google scholar
|
[60] |
Matsukata M, Kizu K, Ogura M, Kikuchi E. Synthesis of EMT zeolite by a steam-assisted crystallization method using crown ether as a structure-directing agent. Crystal Growth & Design, 2001, 1(6): 509–516
CrossRef
Google scholar
|
[61] |
Terasaki O, Ohsuna T, Alfredsson V, Bovin J, Watanabe D, Carr S W, Anderson M W. Observation of spatially correlated intergrowths of faujasitic polytypes and the pure end members by high-resolution electron microscopy. Chemistry of Materials, 1993, 5(4): 452–458
CrossRef
Google scholar
|
[62] |
Treacy M M J, Newsam J M, Beyerlein R A, Leonowicz M E, Vaughan D E W. The structure of zeolite CSZ-1 interpreted as a rhombohedrally distorted variant of the faujasite framework. Journal of the Chemical Society. Chemical Communications, 1986, (15): 1211–1213
CrossRef
Google scholar
|
[63] |
Julius C. ZSM-2 zeolite and preparation thereof. US Patent, 3 411 874, 1968-11-19
|
[64] |
Kokotailo G T, Ciric J. Synthesis and structural features of zeolite ZSM-3. In: Molecular Sieve Zeolites-I. Washington, D.C.: American Chemical Society, 1974, 109–121
|
[65] |
Newsam J, Treacy M, Vaughan D, Strohmaier K, Mortier W. The structure of zeolite ZSM-20: Mixed cubic and hexagonal stackings of faujasite sheets. Journal of the Chemical Society. Chemical Communications, 1989, (8): 493–495
CrossRef
Google scholar
|
[66] |
Wang B, Dutta P K. Synthesis method for introducing mesoporosity in a faujasitic-like zeolite system from a sodium aluminosilicate gel composition. Microporous and Mesoporous Materials, 2017, 239: 195–208
CrossRef
Google scholar
|
[67] |
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723
CrossRef
Google scholar
|
[68] |
Cho K, Cho H S, De Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673
CrossRef
Google scholar
|
[69] |
Shanbhag G V, Choi M, Kim J, Ryoo R. Mesoporous sodalite: A novel, stable solid catalyst for base-catalyzed organic transformations. Journal of Catalysis, 2009, 264(1): 88–92
CrossRef
Google scholar
|
[70] |
Liu L, Wang H, Wang R, Sun C, Zeng S, Jiang S, Zhang D, Zhu L, Zhang Z. N-Methyl-2-pyrrolidone assisted synthesis of hierarchical ZSM-5 with house-of-cards-like structure. RSC Advances, 2014, 4(41): 21301–21305
CrossRef
Google scholar
|
[71] |
Lupulescu A I, Kumar M, Rimer J D. A facile strategy to design zeolite L crystals with tunable morphology and surface architecture. Journal of the American Chemical Society, 2013, 135(17): 6608–6617
CrossRef
Google scholar
|
[72] |
Rimer J, Kumar M, Li R, Lupulescu A, Oleksiak M. Tailoring the physicochemical properties of zeolite catalysts. Catalysis Science & Technology, 2014, 4(11): 3762–3771
CrossRef
Google scholar
|
[73] |
Rioland G, Albrecht S, Josien L, Vidal L, Daou T J. The influence of the nature of organosilane surfactants and their concentration on the formation of hierarchical FAU-type zeolite nanosheets. New Journal of Chemistry, 2015, 39(4): 2675–2681
CrossRef
Google scholar
|
[74] |
Wang L, Sang S, Meng S, Zhang Y, Qi Y, Liu Z. Direct synthesis of Zn-ZSM-5 with novel morphology. Materials Letters, 2007, 61(8-9): 1675–1678
CrossRef
Google scholar
|
[75] |
Inayat A, Schneider C, Schwieger W. Organic-free synthesis of layer-like FAU-type zeolites. Chemical Communications, 2015, 51(2): 279–281
CrossRef
Google scholar
|
[76] |
Fu X, Sheng X, Zhou Y, Fu Z, Zhao S, Zhang Z, Zhang Y. One-step synthesis of hierarchical aluminosilicates using alkoxy-functionalized ionic liquid as a novel template. New Journal of Chemistry, 2016, 40(7): 6036–6045
CrossRef
Google scholar
|
[77] |
Hanif N, Anderson M W, Alfredsson V, Terasaki O. The effect of stirring on the synthesis of intergrowths of zeolite Y polymorphs. Physical Chemistry Chemical Physics, 2000, 2(14): 3349–3357
CrossRef
Google scholar
|
[78] |
Anderson M W, Pachis K S, Prébin F, Carr S W, Terasaki O, Ohsuna T, Alfreddson V. Intergrowths of cubic and hexagonal polytypes of faujasitic zeolites. Journal of the Chemical Society. Chemical Communications, 1991, (23): 1660–1664
CrossRef
Google scholar
|
[79] |
Arhancet J P, Davis M E. Systematic synthesis of zeolites that contain cubic and hexagonal stackings of faujasite sheets. Chemistry of Materials, 1991, 3(4): 567–569
CrossRef
Google scholar
|
[80] |
Burkett S L, Davis M E. Structure-directing effects in the crown ether-mediated syntheses of FAU and EMT zeolites. Microporous Materials, 1993, 1(4): 265–282
CrossRef
Google scholar
|
[81] |
Belandria L, Gonzalez C, Aguirre F, Sosa E, Uzcátegui A, González G, Brito J, Gonzalez-Cortes S, Imbert F. Synthesis, characterization of FAU/EMT intergrowths and its catalytic performance in n-pentane hydroisomerization reaction. Journal of Molecular Catalysis A Chemical, 2008, 281(1-2): 164–172
CrossRef
Google scholar
|
[82] |
Lechert H, Kacirek H. Investigations on the crystallization of X-type zeolites. Zeolites, 1991, 11(7): 720–728
CrossRef
Google scholar
|
[83] |
Ginter A T B, Radke C J. Molecular sieves. In: Synthesis of Microporous Materials. New York: Van Nostrand Reinhold, 1992
|
[84] |
Khaleel M, Xu W, Lesch D A, Tsapatsis M. Combining pre-and post-nucleation Trajectories for the synthesis of high FAU-content Faujasite nano-crystals from organic-free sols. Chemistry of Materials, 2016, 28(12): 4204–4213
CrossRef
Google scholar
|
[85] |
Tang T, Zhang L, Dong H, Fang Z, Fu W, Yu Q, Tang T. Organic template-free synthesis of zeolite Y nanoparticle assemblies and their application in the catalysis of the Ritter reaction. RSC Advances, 2017, 7(13): 7711–7717
CrossRef
Google scholar
|
[86] |
Jia X, Han L, Ma Y, Che S. Additive-free synthesis of mesoporous FAU-type zeolite with intergrown structure. Science China Materials, 2018, 61(8): 1095–1100
CrossRef
Google scholar
|
[87] |
Du Y, Kong Q, Gao Z, Wang Z, Zheng J, Qin B, Pan M, Li W, Li R. Flower-like hierarchical Y with dramatically increased external surface: A potential catalyst contributing to improving pre-cracking for bulky reactant molecules. Industrial & Engineering Chemistry Research, 2018, 57(22): 7395–7403
CrossRef
Google scholar
|
[88] |
Liu L, Wang H, Wang Z, Zhu L, Huang L, Yu L, Fan J, Yao Y, Liu S, Zou J, Zeng X. Evolving mechanism of organotemplate-free hierarchical FAU zeolites with house-of-card-like structures. Chemical Communications, 2018, 54(70): 9821–9824
CrossRef
Google scholar
|
[89] |
Gaber S, Gaber D, Ismail I, Alhassan S M, Khaleel M. Additive-free synthesis of house-of-card faujasite zeolite by utilizing aluminosilicate gel memory. CrystEngComm, 2019, 21(11): 1685–1690
CrossRef
Google scholar
|
[90] |
Nik O G, Nohair B, Kaliaguine S. Aminosilanes grafting on FAU/EMT zeolite: Effect on CO2 adsorptive properties. Microporous and Mesoporous Materials, 2011, 143(1): 221–229
CrossRef
Google scholar
|
[91] |
Ferdov S. FAU-type zeolite nanosheets from additives-free system. Microporous and Mesoporous Materials, 2017, 242: 59–62
CrossRef
Google scholar
|
[92] |
Huang Y, Wang K, Dong D, Li D, Hill M R, Hill A J, Wang H. Synthesis of hierarchical porous zeolite NaY particles with controllable particle sizes. Microporous and Mesoporous Materials, 2010, 127(3): 167–175
CrossRef
Google scholar
|
[93] |
Mather P, Pilato J. Preparation of zeolites. US Patent, 3 808 326, 1974-04-30
|
[94] |
Khajavi S, Kapteijn F, Jansen J C. Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation. Journal of Membrane Science, 2007, 299(1-2): 63–72
CrossRef
Google scholar
|
[95] |
Weitkamp J, Schumacher R. Synthesis, dealumination and physico-chemical characterization of zeolite EMT. In: Proceedings of 9th International Zeolite Conference. Boston: Butterworth-Heinemann, 1993, 353–360
|
[96] |
Breck D. Zeolite Molecular Sieves: Structure, Chemistry, and Use. 99th ed. New York: John Wiley and Sons Inc., 1974, 1–784
|
[97] |
Scardi P, Leoni M, Beyerlein K R. On the modelling of the powder pattern from a nanocrystalline material. Zeitschrift für Kristallographie. Crystalline Materials, 2011, 226(12): 924–933
CrossRef
Google scholar
|
[98] |
Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J, Sing K S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015, 87(9-10): 1051–1069
CrossRef
Google scholar
|
/
〈 | 〉 |