VIEWS & COMMENTS

Perspective of mixed matrix membranes for carbon capture

  • Shinji Kanehashi , 1 ,
  • Colin A. Scholes 2
Expand
  • 1. Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
  • 2. Peter Cook Centre for Carbon Capture and Storage Research, Department of Chemical Engineering, The University of Melbourne, Melbourne 3010, Australia

Received date: 18 Mar 2019

Accepted date: 25 Jun 2019

Published date: 15 Jun 2020

Copyright

2020 Higher Education Press

Abstract

Polymeric membrane-based gas separation has found wide applications in industry, such as carbon capture, hydrogen recovery, natural gas sweetening, as well as oxygen enrichment. Commercial gas separation membranes are required to have high gas permeability and selectivity, while being cost-effective to process. Mixed matrix membranes (MMMs) have a composite structure that consists of polymers and fillers, therefore featuring the advantages of both materials. Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties, such as mechanical strength and thermal stability. This perspective describes potential use of MMMs for carbon capture applications, explores their limitations in fabrication and methods to overcome them, and addresses their performance under industry gas conditions.

Cite this article

Shinji Kanehashi , Colin A. Scholes . Perspective of mixed matrix membranes for carbon capture[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(3) : 460 -469 . DOI: 10.1007/s11705-019-1881-5

1
Baker R W. Membrane Technology and Applications. Hoboken: John Wiley & Sons Ltd., 2004, 1–14

2
Freeman B D, Pinnau I. Polymer Membranes for Gas and Vapor Separation. Washington, DC: American Chemical Society, 1999, 1–27

3
Galizia M, Chi W S, Smith Z P, Merkel T C, Baker R W, Freeman B D. 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules, 2017, 50(20): 7809–7843

DOI

4
Bauer N, Mouratiadou I, Luderer G, Baumstark L, Brecha R J, Edenhofer O, Kriegler E. Global fossil energy markets and climate change mitigation—an analysis with REMIND. Climatic Change, 2016, 136(1): 69–82

DOI

5
Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3(1): 43–81

DOI

6
Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400

DOI

7
Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185

DOI

8
Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 1999, 32(2): 375–380

DOI

9
Chung T S, Jiang L Y, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32(4): 483–507

DOI

10
Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, Ismail A F, Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 2014, 39(5): 817–861

DOI

11
Dong G, Li H, Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(15): 4610–4630

DOI

12
Kanehashi S. Development of hybrid membranes for carbon capture. Kobunshi Ronbunshu, 2016, 73(5): 475–490

DOI

13
Ismail A F, Khulbe K, Matsuura T. Gas Separation Membranes. New York: Springer International Publishing, 2015, 11–35

14
Hilal N, Ismail A F, Matsuura T, Oatley-Radcliffe D. Membrane Characterization. Amsterdam: Elsevier, 2017, 309–336

15
Kanehashi S, Nagai K. Analysis of dual-mode model parameters for gas sorption in glassy polymers. Journal of Membrane Science, 2005, 253(1-2): 117–138

DOI

16
Kanehashi S, Chen G Q, Scholes C A, Ozcelik B, Hua C, Ciddor L, Southon P D, D’Alessandro D M, Kentish S E. Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. Journal of Membrane Science, 2015, 482: 49–55

DOI

17
Bruggeman D A G. Calculation of different physical Constants of heterogeneous substances. I. Dielectric Constants and conductivities of the mixed bodies of isotropic substances. Annalen der Physik, 1935, 416(7): 636–664 (in German)

DOI

18
Lewis T B, Nielsen L E. Dynamic mechanical properties of particulate-filled composites. Journal of Applied Polymer Science, 1970, 14(6): 1449–1471

DOI

19
Mahajan R, Koros W J. Mixed matrix membrane materials with glassy polymers. Part 1. Polymer Engineering and Science, 2002, 42(7): 1420–1431

DOI

20
Bondi A. van der Waals volume and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451

DOI

21
van Krevelen D W. Properties of Polymers. 4th ed. Amsterdam: Elsevier, 2009

22
Kanehashi S, Gu H, Shindo R, Sato S, Miyakoshi T, Nagai K. Gas permeation and separation properties of polyimide/ZSM-5 zeolite composite membranes containing liquid sulfolane. Journal of Applied Polymer Science, 2013, 128(6): 3814–3823

DOI

23
Shindo R, Kishida M, Sawa H, Kidesaki T, Sato S, Kanehashi S, Nagai K. Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid. Journal of Membrane Science, 2014, 454: 330–338

DOI

24
Xin Q, Ouyang J, Liu T, Li Z, Li Z, Liu Y, Wang S, Wu H, Jiang Z, Cao X. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks. ACS Applied Materials & Interfaces, 2015, 7(2): 1065–1077

DOI

25
Patel R, Park J T, Hong H P, Kim J H, Min B R. Use of block copolymer as compatibilizer in polyimide/zeolite composite membranes. Polymers for Advanced Technologies, 2011, 22(5): 768–772

DOI

26
Kanehashi S, Chen G Q, Danaci D, Webley P A, Kentish S E. Can the addition of carbon nanoparticles to a polyimide membrane reduce plasticization? Separation and Purification Technology, 2017, 183: 333–340

DOI

27
Chung T S, Chan S S, Wang R, Lu Z, He C. Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. Journal of Membrane Science, 2003, 211(1): 91–99

DOI

28
Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003, 211(2): 311–334

DOI

29
Zhang Y, Musselman I H, Ferraris J P, Balkus K J. Gas permeability properties of mixed-matrix matrimid membranes containing a carbon aerogel: A material with both micropores and mesopores. Industrial & Engineering Chemistry Research, 2008, 47(8): 2794–2802

DOI

30
Yong H H, Park H C, Kang Y S, Won J, Kim W N. Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. Journal of Membrane Science, 2001, 188(2): 151–163

DOI

31
Zornoza B, Téllez C, Coronas J. Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 2011, 368(1-2): 100–109

DOI

32
Khan A L, Klaysom C, Gahlaut A, Khan A U, Vankelecom I F J. Mixed matrix membranes comprising of Matrimid and –SO3H functionalized mesoporous MCM-41 for gas separation. Journal of Membrane Science, 2013, 447: 73–79

DOI

33
Hosseini S S, Li Y, Chung T S, Liu Y. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 2007, 302(1-2): 207–217

DOI

34
Moghadam F, Omidkhah M R, Vasheghani-Farahani E, Pedram M Z, Dorosti F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011, 77(1): 128–136

DOI

35
Song Q, Nataraj S K, Roussenova M V, Tan J C, Hughes D J, Li W, Bourgoin P, Alam M A, Cheetham A K, Al-Muhtaseb S A, Sivaniah E. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 2012, 5(8): 8359–8369

DOI

36
Zhang Y, Balkus K J Jr, Musselman I H, Ferraris J P. Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles. Journal of Membrane Science, 2008, 325(1): 28–39

DOI

37
Perez E V, Balkus K J Jr, Ferraris J P, Musselman I H. Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 2009, 328(1-2): 165–173

DOI

38
Zhang Y, Musselman I H, Ferraris J P, Balkus K J Jr. Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu-BPY-HFS. Journal of Membrane Science, 2008, 313(1-2): 170–181

DOI

39
Ordoñez M J C, Balkus K J Jr, Ferraris J P, Musselman I H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1-2): 28–37

DOI

40
Nagai K, Masuda T, Nakagawa T, Freeman B D, Pinnau I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Progress in Polymer Science, 2001, 26(5): 721–798

DOI

41
Bos A, Pünt I G M, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science, 1999, 155(1): 67–78

DOI

42
Donohue M D, Minhas B S, Lee S Y. Permeation behavior of carbon dioxide-methane mixtures in cellulose acetate membranes. Journal of Membrane Science, 1989, 42(3): 197–214

DOI

43
Ismail A F, Lorna W. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Separation and Purification Technology, 2002, 27(3): 173–194

DOI

44
Wessling M, Schoeman S, van der Boomgaard T, Smolders C A. Plasticization of gas separation membranes. Gas Separation & Purification, 1991, 5(4): 222–228

DOI

45
Duthie X, Kentish S, Pas S J, Hill A J, Powell C, Nagai K, Stevens G, Qiao G. Thermal treatment of dense polyimide membranes. Journal of Polymer Science. Part B, Polymer Physics, 2008, 46(18): 1879–1890

DOI

46
Duthie X J, Kentish S E, Powell C E, Qiao G G, Nagai K, Stevens G W. Plasticization suppression in grafted polyimide-epoxy network membranes. Industrial & Engineering Chemistry Research, 2007, 46(24): 8183–8192

DOI

47
Kanehashi S, Nakagawa T, Nagai K, Duthie X, Kentish S, Stevens G. Effects of carbon dioxide-induced plasticization on the gas transport properties of glassy polyimide membranes. Journal of Membrane Science, 2007, 298(1–2): 147–155

DOI

48
Kanehashi S, Onda M, Shindo R, Sato S, Kazama S, Nagai K. Synthesis, characterization, and CO2 permeation properties of acetylene-terminated polyimide membranes. Polymer Engineering and Science, 2013, 53(8): 1667–1675

DOI

49
Wind J D, Staudt-Bickel C, Paul D R, Koros W J. Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction. Macromolecules, 2003, 36(6): 1882–1888

DOI

50
Bos A, Pünt I, Strathmann H, Wessling M. Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(5): 1088–1093

DOI

51
Shahid S, Nijmeijer K. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe(BTC). Journal of Membrane Science, 2014, 459: 33–44

DOI

52
Scholes C A, Kentish S E, Stevens G W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Separation and Purification Reviews, 2009, 38(1): 1–44

DOI

53
Merkel T C, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010, 359(1-2): 126–139

DOI

54
Baker R W, Lokhandwala K. Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121

DOI

55
Deng L, Hägg M B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control, 2010, 4(4): 638–646

DOI

56
Chen G Q, Kanehashi S, Doherty C M, Hill A J, Kentish S E. Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification. Journal of Membrane Science, 2015, 487: 249–255

DOI

57
Kanehashi S, Konishi S, Takeo K, Owa K, Kawakita H, Sato S, Miyakoshi T, Nagai K. Effect of OH group on the water vapor sorption property of adamantane-containing polymer membranes. Journal of Membrane Science, 2013, 427: 176–185

DOI

58
Kanehashi S, Tomita Y, Obokata K, Kidesaki T, Sato S, Miyakoshi T, Nagai K. Effect of substituted groups on characterization and water vapor sorption property of polyhedral oligomeric silsesquioxane (POSS)-containing methacryl polymer membranes. Polymer, 2013, 54(9): 2315–2323

DOI

59
Azher H, Scholes C A, Stevens G W, Kentish S E. Water permeation and sorption properties of Nafion 115 at elevated temperatures. Journal of Membrane Science, 2014, 459: 104–113

DOI

60
Lu H T, Kanehashi S, Scholes C A, Kentish S E. The potential for use of cellulose triacetate membranes in post combustion capture. International Journal of Greenhouse Gas Control, 2016, 55: 97–104

DOI

61
Farla J C M, Hendriks C A, Blok K. Carbon dioxide recovery from industrial processes. Climatic Change, 1995, 29(4): 439–461

DOI

62
Thambimuthu K, Soltanieh M, Abandas J C. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2005

63
Awe O W, Zhao Y, Nzihou A, Minh D P, Lyczko N. A review of biogas utilisation, purification and upgrading technologies. Waste and Biomass Valorization, 2017, 8(2): 267–283

DOI

64
Kanehashi S, Chen G Q, Ciddor L, Chaffee A, Kentish S E. The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492: 471–477

DOI

65
Kanehashi S, Aguiar A, Lu H T, Chen G Q, Kentish S. Effects of industrial gas impurities on the performance of mixed matrix membranes. Journal of Membrane Science, 2018, 549: 686–692

DOI

Outlines

/