Perspective of mixed matrix membranes for carbon capture

Shinji Kanehashi, Colin A. Scholes

PDF(1397 KB)
PDF(1397 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 460-469. DOI: 10.1007/s11705-019-1881-5
VIEWS & COMMENTS
VIEWS & COMMENTS

Perspective of mixed matrix membranes for carbon capture

Author information +
History +

Abstract

Polymeric membrane-based gas separation has found wide applications in industry, such as carbon capture, hydrogen recovery, natural gas sweetening, as well as oxygen enrichment. Commercial gas separation membranes are required to have high gas permeability and selectivity, while being cost-effective to process. Mixed matrix membranes (MMMs) have a composite structure that consists of polymers and fillers, therefore featuring the advantages of both materials. Much effort has been made to improve the gas separation performance of MMMs as well as general membrane properties, such as mechanical strength and thermal stability. This perspective describes potential use of MMMs for carbon capture applications, explores their limitations in fabrication and methods to overcome them, and addresses their performance under industry gas conditions.

Graphical abstract

Keywords

membranes / polymeric / mixed matrix / impurities

Cite this article

Download citation ▾
Shinji Kanehashi, Colin A. Scholes. Perspective of mixed matrix membranes for carbon capture. Front. Chem. Sci. Eng., 2020, 14(3): 460‒469 https://doi.org/10.1007/s11705-019-1881-5

References

[1]
Baker R W. Membrane Technology and Applications. Hoboken: John Wiley & Sons Ltd., 2004, 1–14
[2]
Freeman B D, Pinnau I. Polymer Membranes for Gas and Vapor Separation. Washington, DC: American Chemical Society, 1999, 1–27
[3]
Galizia M, Chi W S, Smith Z P, Merkel T C, Baker R W, Freeman B D. 50th anniversary perspective: Polymers and mixed matrix membranes for gas and vapor separation: A review and prospective opportunities. Macromolecules, 2017, 50(20): 7809–7843
CrossRef Google scholar
[4]
Bauer N, Mouratiadou I, Luderer G, Baumstark L, Brecha R J, Edenhofer O, Kriegler E. Global fossil energy markets and climate change mitigation—an analysis with REMIND. Climatic Change, 2016, 136(1): 69–82
CrossRef Google scholar
[5]
Mikkelsen M, Jørgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science, 2010, 3(1): 43–81
CrossRef Google scholar
[6]
Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400
CrossRef Google scholar
[7]
Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185
CrossRef Google scholar
[8]
Freeman B D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 1999, 32(2): 375–380
CrossRef Google scholar
[9]
Chung T S, Jiang L Y, Li Y, Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32(4): 483–507
CrossRef Google scholar
[10]
Rezakazemi M, Ebadi Amooghin A, Montazer-Rahmati M M, Ismail A F, Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 2014, 39(5): 817–861
CrossRef Google scholar
[11]
Dong G, Li H, Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(15): 4610–4630
CrossRef Google scholar
[12]
Kanehashi S. Development of hybrid membranes for carbon capture. Kobunshi Ronbunshu, 2016, 73(5): 475–490
CrossRef Google scholar
[13]
Ismail A F, Khulbe K, Matsuura T. Gas Separation Membranes. New York: Springer International Publishing, 2015, 11–35
[14]
Hilal N, Ismail A F, Matsuura T, Oatley-Radcliffe D. Membrane Characterization. Amsterdam: Elsevier, 2017, 309–336
[15]
Kanehashi S, Nagai K. Analysis of dual-mode model parameters for gas sorption in glassy polymers. Journal of Membrane Science, 2005, 253(1-2): 117–138
CrossRef Google scholar
[16]
Kanehashi S, Chen G Q, Scholes C A, Ozcelik B, Hua C, Ciddor L, Southon P D, D’Alessandro D M, Kentish S E. Enhancing gas permeability in mixed matrix membranes through tuning the nanoparticle properties. Journal of Membrane Science, 2015, 482: 49–55
CrossRef Google scholar
[17]
Bruggeman D A G. Calculation of different physical Constants of heterogeneous substances. I. Dielectric Constants and conductivities of the mixed bodies of isotropic substances. Annalen der Physik, 1935, 416(7): 636–664 (in German)
CrossRef Google scholar
[18]
Lewis T B, Nielsen L E. Dynamic mechanical properties of particulate-filled composites. Journal of Applied Polymer Science, 1970, 14(6): 1449–1471
CrossRef Google scholar
[19]
Mahajan R, Koros W J. Mixed matrix membrane materials with glassy polymers. Part 1. Polymer Engineering and Science, 2002, 42(7): 1420–1431
CrossRef Google scholar
[20]
Bondi A. van der Waals volume and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451
CrossRef Google scholar
[21]
van Krevelen D W. Properties of Polymers. 4th ed. Amsterdam: Elsevier, 2009
[22]
Kanehashi S, Gu H, Shindo R, Sato S, Miyakoshi T, Nagai K. Gas permeation and separation properties of polyimide/ZSM-5 zeolite composite membranes containing liquid sulfolane. Journal of Applied Polymer Science, 2013, 128(6): 3814–3823
CrossRef Google scholar
[23]
Shindo R, Kishida M, Sawa H, Kidesaki T, Sato S, Kanehashi S, Nagai K. Characterization and gas permeation properties of polyimide/ZSM-5 zeolite composite membranes containing ionic liquid. Journal of Membrane Science, 2014, 454: 330–338
CrossRef Google scholar
[24]
Xin Q, Ouyang J, Liu T, Li Z, Li Z, Liu Y, Wang S, Wu H, Jiang Z, Cao X. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks. ACS Applied Materials & Interfaces, 2015, 7(2): 1065–1077
CrossRef Google scholar
[25]
Patel R, Park J T, Hong H P, Kim J H, Min B R. Use of block copolymer as compatibilizer in polyimide/zeolite composite membranes. Polymers for Advanced Technologies, 2011, 22(5): 768–772
CrossRef Google scholar
[26]
Kanehashi S, Chen G Q, Danaci D, Webley P A, Kentish S E. Can the addition of carbon nanoparticles to a polyimide membrane reduce plasticization? Separation and Purification Technology, 2017, 183: 333–340
CrossRef Google scholar
[27]
Chung T S, Chan S S, Wang R, Lu Z, He C. Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. Journal of Membrane Science, 2003, 211(1): 91–99
CrossRef Google scholar
[28]
Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003, 211(2): 311–334
CrossRef Google scholar
[29]
Zhang Y, Musselman I H, Ferraris J P, Balkus K J. Gas permeability properties of mixed-matrix matrimid membranes containing a carbon aerogel: A material with both micropores and mesopores. Industrial & Engineering Chemistry Research, 2008, 47(8): 2794–2802
CrossRef Google scholar
[30]
Yong H H, Park H C, Kang Y S, Won J, Kim W N. Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. Journal of Membrane Science, 2001, 188(2): 151–163
CrossRef Google scholar
[31]
Zornoza B, Téllez C, Coronas J. Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. Journal of Membrane Science, 2011, 368(1-2): 100–109
CrossRef Google scholar
[32]
Khan A L, Klaysom C, Gahlaut A, Khan A U, Vankelecom I F J. Mixed matrix membranes comprising of Matrimid and –SO3H functionalized mesoporous MCM-41 for gas separation. Journal of Membrane Science, 2013, 447: 73–79
CrossRef Google scholar
[33]
Hosseini S S, Li Y, Chung T S, Liu Y. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 2007, 302(1-2): 207–217
CrossRef Google scholar
[34]
Moghadam F, Omidkhah M R, Vasheghani-Farahani E, Pedram M Z, Dorosti F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011, 77(1): 128–136
CrossRef Google scholar
[35]
Song Q, Nataraj S K, Roussenova M V, Tan J C, Hughes D J, Li W, Bourgoin P, Alam M A, Cheetham A K, Al-Muhtaseb S A, Sivaniah E. Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy & Environmental Science, 2012, 5(8): 8359–8369
CrossRef Google scholar
[36]
Zhang Y, Balkus K J Jr, Musselman I H, Ferraris J P. Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles. Journal of Membrane Science, 2008, 325(1): 28–39
CrossRef Google scholar
[37]
Perez E V, Balkus K J Jr, Ferraris J P, Musselman I H. Mixed-matrix membranes containing MOF-5 for gas separations. Journal of Membrane Science, 2009, 328(1-2): 165–173
CrossRef Google scholar
[38]
Zhang Y, Musselman I H, Ferraris J P, Balkus K J Jr. Gas permeability properties of Matrimid® membranes containing the metal-organic framework Cu-BPY-HFS. Journal of Membrane Science, 2008, 313(1-2): 170–181
CrossRef Google scholar
[39]
Ordoñez M J C, Balkus K J Jr, Ferraris J P, Musselman I H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. Journal of Membrane Science, 2010, 361(1-2): 28–37
CrossRef Google scholar
[40]
Nagai K, Masuda T, Nakagawa T, Freeman B D, Pinnau I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Progress in Polymer Science, 2001, 26(5): 721–798
CrossRef Google scholar
[41]
Bos A, Pünt I G M, Wessling M, Strathmann H. CO2-induced plasticization phenomena in glassy polymers. Journal of Membrane Science, 1999, 155(1): 67–78
CrossRef Google scholar
[42]
Donohue M D, Minhas B S, Lee S Y. Permeation behavior of carbon dioxide-methane mixtures in cellulose acetate membranes. Journal of Membrane Science, 1989, 42(3): 197–214
CrossRef Google scholar
[43]
Ismail A F, Lorna W. Penetrant-induced plasticization phenomenon in glassy polymers for gas separation membrane. Separation and Purification Technology, 2002, 27(3): 173–194
CrossRef Google scholar
[44]
Wessling M, Schoeman S, van der Boomgaard T, Smolders C A. Plasticization of gas separation membranes. Gas Separation & Purification, 1991, 5(4): 222–228
CrossRef Google scholar
[45]
Duthie X, Kentish S, Pas S J, Hill A J, Powell C, Nagai K, Stevens G, Qiao G. Thermal treatment of dense polyimide membranes. Journal of Polymer Science. Part B, Polymer Physics, 2008, 46(18): 1879–1890
CrossRef Google scholar
[46]
Duthie X J, Kentish S E, Powell C E, Qiao G G, Nagai K, Stevens G W. Plasticization suppression in grafted polyimide-epoxy network membranes. Industrial & Engineering Chemistry Research, 2007, 46(24): 8183–8192
CrossRef Google scholar
[47]
Kanehashi S, Nakagawa T, Nagai K, Duthie X, Kentish S, Stevens G. Effects of carbon dioxide-induced plasticization on the gas transport properties of glassy polyimide membranes. Journal of Membrane Science, 2007, 298(1–2): 147–155
CrossRef Google scholar
[48]
Kanehashi S, Onda M, Shindo R, Sato S, Kazama S, Nagai K. Synthesis, characterization, and CO2 permeation properties of acetylene-terminated polyimide membranes. Polymer Engineering and Science, 2013, 53(8): 1667–1675
CrossRef Google scholar
[49]
Wind J D, Staudt-Bickel C, Paul D R, Koros W J. Solid-state covalent cross-linking of polyimide membranes for carbon dioxide plasticization reduction. Macromolecules, 2003, 36(6): 1882–1888
CrossRef Google scholar
[50]
Bos A, Pünt I, Strathmann H, Wessling M. Suppression of gas separation membrane plasticization by homogeneous polymer blending. AIChE Journal. American Institute of Chemical Engineers, 2001, 47(5): 1088–1093
CrossRef Google scholar
[51]
Shahid S, Nijmeijer K. High pressure gas separation performance of mixed-matrix polymer membranes containing mesoporous Fe(BTC). Journal of Membrane Science, 2014, 459: 33–44
CrossRef Google scholar
[52]
Scholes C A, Kentish S E, Stevens G W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Separation and Purification Reviews, 2009, 38(1): 1–44
CrossRef Google scholar
[53]
Merkel T C, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. Journal of Membrane Science, 2010, 359(1-2): 126–139
CrossRef Google scholar
[54]
Baker R W, Lokhandwala K. Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121
CrossRef Google scholar
[55]
Deng L, Hägg M B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. International Journal of Greenhouse Gas Control, 2010, 4(4): 638–646
CrossRef Google scholar
[56]
Chen G Q, Kanehashi S, Doherty C M, Hill A J, Kentish S E. Water vapor permeation through cellulose acetate membranes and its impact upon membrane separation performance for natural gas purification. Journal of Membrane Science, 2015, 487: 249–255
CrossRef Google scholar
[57]
Kanehashi S, Konishi S, Takeo K, Owa K, Kawakita H, Sato S, Miyakoshi T, Nagai K. Effect of OH group on the water vapor sorption property of adamantane-containing polymer membranes. Journal of Membrane Science, 2013, 427: 176–185
CrossRef Google scholar
[58]
Kanehashi S, Tomita Y, Obokata K, Kidesaki T, Sato S, Miyakoshi T, Nagai K. Effect of substituted groups on characterization and water vapor sorption property of polyhedral oligomeric silsesquioxane (POSS)-containing methacryl polymer membranes. Polymer, 2013, 54(9): 2315–2323
CrossRef Google scholar
[59]
Azher H, Scholes C A, Stevens G W, Kentish S E. Water permeation and sorption properties of Nafion 115 at elevated temperatures. Journal of Membrane Science, 2014, 459: 104–113
CrossRef Google scholar
[60]
Lu H T, Kanehashi S, Scholes C A, Kentish S E. The potential for use of cellulose triacetate membranes in post combustion capture. International Journal of Greenhouse Gas Control, 2016, 55: 97–104
CrossRef Google scholar
[61]
Farla J C M, Hendriks C A, Blok K. Carbon dioxide recovery from industrial processes. Climatic Change, 1995, 29(4): 439–461
CrossRef Google scholar
[62]
Thambimuthu K, Soltanieh M, Abandas J C. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 2005
[63]
Awe O W, Zhao Y, Nzihou A, Minh D P, Lyczko N. A review of biogas utilisation, purification and upgrading technologies. Waste and Biomass Valorization, 2017, 8(2): 267–283
CrossRef Google scholar
[64]
Kanehashi S, Chen G Q, Ciddor L, Chaffee A, Kentish S E. The impact of water vapor on CO2 separation performance of mixed matrix membranes. Journal of Membrane Science, 2015, 492: 471–477
CrossRef Google scholar
[65]
Kanehashi S, Aguiar A, Lu H T, Chen G Q, Kentish S. Effects of industrial gas impurities on the performance of mixed matrix membranes. Journal of Membrane Science, 2018, 549: 686–692
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(1397 KB)

Accesses

Citations

Detail

Sections
Recommended

/