Frontiers of Chemical Science and Engineering >
A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation
Received date: 20 Mar 2019
Accepted date: 16 Jul 2019
Published date: 15 Jun 2020
Copyright
A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type (La1–xCax)2 (Ni0.75Cu0.25)O4+δ was successfully prepared through a sol-gel route. Their chemical compatibility, oxygen permeability, CO and CO2 tolerance, and long-term CO2 resistance regarding phase composition and crystal structure at different atmospheres were studied. The results show that higher Ca contents in the material lead to the formation of CaCO3. A constant oxygen permeation flux of about 0.63 mL·min−1·cm−2 at 1173 K through a 0.65 mm thick membrane was measured for (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ, using either helium or pure CO2 as sweep gas. Steady oxygen fluxes with no sign of deterioration of this membrane were observed with increasing CO2 concentration. The membrane showed excellent chemical stability towards CO2 for more than 1360 h and phase stability in presence of CO for 4 h at high temperature. In addition, this membrane did not deteriorate in a high-energy CO2 plasma. The present work demonstrates that this (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ membrane is a promising chemically robust candidate for oxygen separation applications.
Guoxing Chen , Marc Widenmeyer , Binjie Tang , Louise Kaeswurm , Ling Wang , Armin Feldhoff , Anke Weidenkaff . A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation[J]. Frontiers of Chemical Science and Engineering, 2020 , 14(3) : 405 -414 . DOI: 10.1007/s11705-019-1886-0
1 |
De Guido G, Compagnoni M, Pellegrini L A, Rossetti I. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion. Frontiers of Chemical Science and Engineering, 2018, 12(2): 315–325
|
2 |
Chen G, Godfroid T, Georgieva V, Britun N, Delplancke-Ogletree M P, Snyders R. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Applied Catalysis B: Environmental, 2017, 214: 114–125
|
3 |
Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J, Zhang J. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chemical Society Reviews, 2017, 46(5): 1427–1463
|
4 |
Britun N, Silva T, Chen G, Godfroid T, van der Mullen J, Snyders R. Plasma-assisted CO2 conversion: Optimizing performance via microwave power modulation. Journal of Physics. D, Applied Physics, 2018, 51(14): 144002
|
5 |
Chen G, Georgieva V, Godfroid T, Snyders R, Delplancke-Ogletree M P. Plasma assisted catalytic decomposition of CO2. Applied Catalysis B: Environmental, 2016, 190: 115–124
|
6 |
Chen G, Britun N, Godfroid T, Georgieva V, Snyders R, Delplancke-Ogletree M P. An overview of CO2 conversion in a microwave discharge: The role of plasma-catalysis. Journal of Physics. D, Applied Physics, 2017, 50(8): 084001
|
7 |
Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, Van den Bekerom D, Den Harder D, Goede A, Graswinckel M, Groen P W,
|
8 |
Sunarso J, Baumann S, Serra J M, Meulenberg W A, Liu S, Lin Y S, Da Costa J D. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1-2): 13–41
|
9 |
Zhang C, Sunarso J, Liu S. Designing CO2-resistant oxygen-selective mixed ionic–electronic conducting membranes: Guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005
|
10 |
Li K, Zhao H, Lu Y, Ma Y, Du Z, Zhang Z. High CO2 tolerance oxygen permeation membranes BaFe0.95–xCa0.05TixO3–δ. Journal of Membrane Science, 2018, 550: 302–312
|
11 |
Stadler H, Beggel F, Habermehl M, Persigehl B, Kneer R, Modigell M, Jeschke P. Oxyfuel coal combustion by efficient integration of oxygen transport membranes. International Journal of Greenhouse Gas Control, 2011, 5(1): 7–15
|
12 |
Schiestel T, Kilgus M, Peter S, Caspary K J, Wang H, Caro J. Hollow fibre perovskite membranes for oxygen separation. Journal of Membrane Science, 2005, 258(1-2): 1–4
|
13 |
Khromushin I V, Aksenova T I, Zhotabaev Z R. Mechanism of gas–solid exchange processes for some perovskites. Solid State Ionics, 2003, 162-163: 37–40
|
14 |
Yi J X, Feng S J, Zuo Y B, Liu W, Chen C S. Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3−δ in a CO2 and H2O containing atmosphere. Chemistry of Materials, 2005, 17(23): 5856–5861
|
15 |
Tong J H, Yang W S, Zhu B C, Cai R. Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation. Journal of Membrane Science, 2002, 203(1-2): 175–189
|
16 |
Chen G, Liu W, Widenmeyer M, Ying P, Dou M, Xie W, Bubeck C, Wang L, Fyta M, Feldhoff A, Weidenkaff A. High flux and CO2-resistance of La0.6Ca0.4Co1–xFexO3−δ oxygen-transporting membranes. Journal of Membrane Science, 2019, 590: 117082
|
17 |
Tenelshof J E, Bouwmeester H J M, Verweij H. Oxygen transport through La1−xSrxFeO3−δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1-2): 81–92
|
18 |
Luo H, Efimov K, Jiang H, Feldhoff A, Wang H, Caro J. CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763
|
19 |
Luo H, Jiang H, Klande T, Liang F, Cao Z, Wang H, Caro J. Rapid glycine-nitrate combustion synthesis of the CO2-stable dual phase membrane 40Mn1.5Co1.5O4−δ-60Ce0.9Pr0.1O2−δ for CO2 capture via an oxy-fuel process. Journal of Membrane Science, 2012, 423-424: 450–458
|
20 |
Cheng H, Zhang N, Xiong X, Lu X, Zhao H, Li S, Zhou Z. Synthesis, Oxygen permeation, and CO2-tolerance properties of Ce0.8Gd0.2O2−δ-Ba0.95La0.05Fe1–xNbxO3−δ dual-phase membranes. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1982–1992
|
21 |
Wang Z, Sun W, Zhu Z, Liu T, Liu W. A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane. ACS Applied Materials & Interfaces, 2013, 5(21): 11038–11043
|
22 |
Bi X, Meng X, Liu P, Yang N, Zhu Z, Ran R, Liu S. A novel CO2-resistant ceramic dual-phase hollow fiber membrane for oxygen separation. Journal of Membrane Science, 2017, 522: 91–99
|
23 |
Cao Z, Zhu X, Li W, Xu B, Yang L, Yang W. Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation. Materials Letters, 2015, 147: 88–91
|
24 |
Garcia-Fayos J, Balaguer M, Baumann S, Serra J M. Dual-phase membrane based on LaCo0.2Ni0.4Fe0.4O3−x-Ce0.8Gd0.2O2−x composition for oxygen permeation under CO2/SO2-rich gas environments. Journal of Membrane Science, 2018, 548: 117–124
|
25 |
Gupta S, Mahapatra M K, Singh P. Lanthanum chromite based perovskites for oxygen transport membrane. Materials Science and Engineering R Reports, 2015, 90: 1–36
|
26 |
Wang H, Tablet C, Feldhoff A, Caro J. Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1-2): 20–26
|
27 |
Li T, Kamhangdatepon T, Wang B, Hartley U W, Li K. New bio-inspired design for high-performance and highly robust La0.6Sr0.4Co0.2Fe0.8O3–δ membranes for oxygen permeation. Journal of Membrane Science, 2019, 578: 203–208
|
28 |
Efimov K, Klande T, Juditzki N, Feldhoff A. Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215
|
29 |
Arnold M, Wang H, Feldhoff A. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 2007, 293(1-2): 44–52
|
30 |
Liang F, Jiang H, Luo H, Caro J, Feldhoff A. Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane in high-purity oxygen production. Chemistry of Materials, 2011, 23(21): 4765–4772
|
31 |
Yoo C Y, Bouwmeester H J. Oxygen surface exchange kinetics of SrTi1−xFexO3−δ mixed conducting oxides. Physical Chemistry Chemical Physics, 2012, 14(33): 11759–11765
|
32 |
Vente J F, McIntosh S, Haije W G, Bouwmeester H J. Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. Journal of Solid State Electrochemistry, 2006, 10(8): 581–588
|
33 |
Zhang Z, Chen D, Dong F, Xu X, Hao Y, Shao Z. Understanding the doping effect toward the design of CO2-tolerant Perovskite membranes with enhanced oxygen permeability. Journal of Membrane Science, 2016, 59: 11–21
|
34 |
Zhang Z, Xu X, Zhang J, Chen D, Zeng D, Liu S, Zhou W, Shao Z. Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. Journal of Membrane Science, 2018, 563: 617–624
|
35 |
Zhang Z, Zhou W, Chen Y, Chen D, Chen J, Liu S, Jin W, Shao Z. Novel approach for developing dual-phase ceramic membranes for oxygen separation through beneficial phase reaction. ACS Applied Materials & Interfaces, 2015, 7(41): 22918–22926
|
36 |
He Y, Shi L, Wu F, Xie W, Wang S, Yan D, Liu P, Li M R, Caro J, Luo H. A novel dual phase membrane 40 wt-% Nd0.6Sr0.4CoO3–δ-60wt-% Ce0.9 Nd0.1O2–δ: Design, synthesis and properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(1): 84–92
|
37 |
Luo H, Klande K, Cao Z, Liang F, Wang H, Caro J A. CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(21): 7780–7787
|
38 |
Minervini L, Grimes R W, Kilner J A, Sickafus K E. Oxygen migration in La2NiO4+δ. Journal of Materials Chemistry, 2000, 10(10): 2349–2354
|
39 |
Lee D, Lee H. Controlling oxygen mobility in Ruddlesden–Popper oxides. Materials (Basel), 2017, 10(4): 368
|
40 |
Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T. Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. Journal of the American Chemical Society, 2008, 130(9): 2762–2763
|
41 |
Klande T, Efimov K, Cusenza S, Becker K D, Feldhoff A. Effect of doping, microstructure, and CO2 on La2NiO4+δ-based oxygen-transporting materials. Journal of Solid State Chemistry, 2011, 184(12): 3310–3318
|
42 |
Xue J, Liao Q, Chen W, Bouwmeester H J, Wang H, Feldhoff A. A new CO2-resistant Ruddlesden–Popper oxide with superior oxygen transport: A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(37): 19107–19114
|
43 |
Chen Y, Liao Q, Wei Y, Li Z, Wang H A. CO2-stable K2NiF4-type oxide (Nd0.9La0.1)2(Ni0.74Cu0.21Al0.05)O4+δ for oxygen separation. Industrial & Engineering Chemistry Research, 2013, 52(25): 8571–8578
|
44 |
Xue J, Schulz A, Wang H, Feldhoff A. The phase stability of the Ruddlesden-Popper type oxide (Pr0.9 La0.1)2.0Ni0.74Cu0.21Ga0.05O4+δ in an oxidizing environment. Journal of Membrane Science, 2016, 497: 357–364
|
45 |
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5): 751–767
|
46 |
Chen G, Silva T, Georgieva V, Godfroid T, Britun N, Snyders R, Delplancke-Ogletree M P. Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. International Journal of Hydrogen Energy, 2015, 40(9): 3789–3796
|
/
〈 | 〉 |