A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation

Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff

PDF(2122 KB)
PDF(2122 KB)
Front. Chem. Sci. Eng. ›› 2020, Vol. 14 ›› Issue (3) : 405-414. DOI: 10.1007/s11705-019-1886-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation

Author information +
History +

Abstract

A series of novel dense mixed conducting ceramic membranes based on K2NiF4-type (La1–xCax)2 (Ni0.75Cu0.25)O4+δ was successfully prepared through a sol-gel route. Their chemical compatibility, oxygen permeability, CO and CO2 tolerance, and long-term CO2 resistance regarding phase composition and crystal structure at different atmospheres were studied. The results show that higher Ca contents in the material lead to the formation of CaCO3. A constant oxygen permeation flux of about 0.63 mL·min1·cm2 at 1173 K through a 0.65 mm thick membrane was measured for (La0.9Ca0.1)2 (Ni0.75Cu0.25)O4+δ, using either helium or pure CO2 as sweep gas. Steady oxygen fluxes with no sign of deterioration of this membrane were observed with increasing CO2 concentration. The membrane showed excellent chemical stability towards CO2 for more than 1360 h and phase stability in presence of CO for 4 h at high temperature. In addition, this membrane did not deteriorate in a high-energy CO2 plasma. The present work demonstrates that this (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+δ membrane is a promising chemically robust candidate for oxygen separation applications.

Graphical abstract

Keywords

K2NiF4 structure / oxygen permeation membrane / CO2 and CO resistances / CO2 plasma resistance / long-term robustness

Cite this article

Download citation ▾
Guoxing Chen, Marc Widenmeyer, Binjie Tang, Louise Kaeswurm, Ling Wang, Armin Feldhoff, Anke Weidenkaff. A CO and CO2 tolerating (La0.9Ca0.1)2(Ni0.75Cu0.25)O4+d Ruddlesden-Popper membrane for oxygen separation. Front. Chem. Sci. Eng., 2020, 14(3): 405‒414 https://doi.org/10.1007/s11705-019-1886-0

References

[1]
De Guido G, Compagnoni M, Pellegrini L A, Rossetti I. Mature versus emerging technologies for CO2 capture in power plants: Key open issues in post-combustion amine scrubbing and in chemical looping combustion. Frontiers of Chemical Science and Engineering, 2018, 12(2): 315–325
CrossRef Google scholar
[2]
Chen G, Godfroid T, Georgieva V, Britun N, Delplancke-Ogletree M P, Snyders R. Plasma-catalytic conversion of CO2 and CO2/H2O in a surface-wave sustained microwave discharge. Applied Catalysis B: Environmental, 2017, 214: 114–125
CrossRef Google scholar
[3]
Zheng Y, Wang J, Yu B, Zhang W, Chen J, Qiao J, Zhang J. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): Advanced materials and technology. Chemical Society Reviews, 2017, 46(5): 1427–1463
CrossRef Google scholar
[4]
Britun N, Silva T, Chen G, Godfroid T, van der Mullen J, Snyders R. Plasma-assisted CO2 conversion: Optimizing performance via microwave power modulation. Journal of Physics. D, Applied Physics, 2018, 51(14): 144002
CrossRef Google scholar
[5]
Chen G, Georgieva V, Godfroid T, Snyders R, Delplancke-Ogletree M P. Plasma assisted catalytic decomposition of CO2. Applied Catalysis B: Environmental, 2016, 190: 115–124
CrossRef Google scholar
[6]
Chen G, Britun N, Godfroid T, Georgieva V, Snyders R, Delplancke-Ogletree M P. An overview of CO2 conversion in a microwave discharge: The role of plasma-catalysis. Journal of Physics. D, Applied Physics, 2017, 50(8): 084001
CrossRef Google scholar
[7]
Bongers W, Bouwmeester H, Wolf B, Peeters F, Welzel S, Van den Bekerom D, Den Harder D, Goede A, Graswinckel M, Groen P W, Plasma-driven dissociation of CO2 for fuel synthesis. Plasma Processes and Polymers, 2017, 14(6): 1600126
CrossRef Google scholar
[8]
Sunarso J, Baumann S, Serra J M, Meulenberg W A, Liu S, Lin Y S, Da Costa J D. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. Journal of Membrane Science, 2008, 320(1-2): 13–41
CrossRef Google scholar
[9]
Zhang C, Sunarso J, Liu S. Designing CO2-resistant oxygen-selective mixed ionic–electronic conducting membranes: Guidelines, recent advances, and forward directions. Chemical Society Reviews, 2017, 46(10): 2941–3005
CrossRef Google scholar
[10]
Li K, Zhao H, Lu Y, Ma Y, Du Z, Zhang Z. High CO2 tolerance oxygen permeation membranes BaFe0.95–xCa0.05TixO3–δ. Journal of Membrane Science, 2018, 550: 302–312
CrossRef Google scholar
[11]
Stadler H, Beggel F, Habermehl M, Persigehl B, Kneer R, Modigell M, Jeschke P. Oxyfuel coal combustion by efficient integration of oxygen transport membranes. International Journal of Greenhouse Gas Control, 2011, 5(1): 7–15
CrossRef Google scholar
[12]
Schiestel T, Kilgus M, Peter S, Caspary K J, Wang H, Caro J. Hollow fibre perovskite membranes for oxygen separation. Journal of Membrane Science, 2005, 258(1-2): 1–4
CrossRef Google scholar
[13]
Khromushin I V, Aksenova T I, Zhotabaev Z R. Mechanism of gas–solid exchange processes for some perovskites. Solid State Ionics, 2003, 162-163: 37–40
CrossRef Google scholar
[14]
Yi J X, Feng S J, Zuo Y B, Liu W, Chen C S. Oxygen permeability and stability of Sr0.95Co0.8Fe0.2O3−δ in a CO2 and H2O containing atmosphere. Chemistry of Materials, 2005, 17(23): 5856–5861
CrossRef Google scholar
[15]
Tong J H, Yang W S, Zhu B C, Cai R. Investigation of ideal zirconium-doped perovskite-type ceramic membrane materials for oxygen separation. Journal of Membrane Science, 2002, 203(1-2): 175–189
CrossRef Google scholar
[16]
Chen G, Liu W, Widenmeyer M, Ying P, Dou M, Xie W, Bubeck C, Wang L, Fyta M, Feldhoff A, Weidenkaff A. High flux and CO2-resistance of La0.6Ca0.4Co1–xFexO3−δ oxygen-transporting membranes. Journal of Membrane Science, 2019, 590: 117082
CrossRef Google scholar
[17]
Tenelshof J E, Bouwmeester H J M, Verweij H. Oxygen transport through La1−xSrxFeO3−δ membranes II. Permeation in air/CO, CO2 gradients. Solid State Ionics, 1996, 89(1-2): 81–92
CrossRef Google scholar
[18]
Luo H, Efimov K, Jiang H, Feldhoff A, Wang H, Caro J. CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011, 50(3): 759–763
CrossRef Google scholar
[19]
Luo H, Jiang H, Klande T, Liang F, Cao Z, Wang H, Caro J. Rapid glycine-nitrate combustion synthesis of the CO2-stable dual phase membrane 40Mn1.5Co1.5O4−δ-60Ce0.9Pr0.1O2−δ for CO2 capture via an oxy-fuel process. Journal of Membrane Science, 2012, 423-424: 450–458
CrossRef Google scholar
[20]
Cheng H, Zhang N, Xiong X, Lu X, Zhao H, Li S, Zhou Z. Synthesis, Oxygen permeation, and CO2-tolerance properties of Ce0.8Gd0.2O2−δ-Ba0.95La0.05Fe1–xNbxO3−δ dual-phase membranes. ACS Sustainable Chemistry & Engineering, 2015, 3(9): 1982–1992
CrossRef Google scholar
[21]
Wang Z, Sun W, Zhu Z, Liu T, Liu W. A novel cobalt-free, CO2-stable, and reduction-tolerant dual-phase oxygen-permeable membrane. ACS Applied Materials & Interfaces, 2013, 5(21): 11038–11043
CrossRef Google scholar
[22]
Bi X, Meng X, Liu P, Yang N, Zhu Z, Ran R, Liu S. A novel CO2-resistant ceramic dual-phase hollow fiber membrane for oxygen separation. Journal of Membrane Science, 2017, 522: 91–99
CrossRef Google scholar
[23]
Cao Z, Zhu X, Li W, Xu B, Yang L, Yang W. Asymmetric dual-phase membranes prepared via tape-casting and co-lamination for oxygen permeation. Materials Letters, 2015, 147: 88–91
CrossRef Google scholar
[24]
Garcia-Fayos J, Balaguer M, Baumann S, Serra J M. Dual-phase membrane based on LaCo0.2Ni0.4Fe0.4O3−x-Ce0.8Gd0.2O2−x composition for oxygen permeation under CO2/SO2-rich gas environments. Journal of Membrane Science, 2018, 548: 117–124
CrossRef Google scholar
[25]
Gupta S, Mahapatra M K, Singh P. Lanthanum chromite based perovskites for oxygen transport membrane. Materials Science and Engineering R Reports, 2015, 90: 1–36
CrossRef Google scholar
[26]
Wang H, Tablet C, Feldhoff A, Caro J. Investigation of phase structure, sintering, and permeability of perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3−δ membranes. Journal of Membrane Science, 2005, 262(1-2): 20–26
CrossRef Google scholar
[27]
Li T, Kamhangdatepon T, Wang B, Hartley U W, Li K. New bio-inspired design for high-performance and highly robust La0.6Sr0.4Co0.2Fe0.8O3–δ membranes for oxygen permeation. Journal of Membrane Science, 2019, 578: 203–208
CrossRef Google scholar
[28]
Efimov K, Klande T, Juditzki N, Feldhoff A. Ca-containing CO2-tolerant perovskite materials for oxygen separation. Journal of Membrane Science, 2012, 389: 205–215
CrossRef Google scholar
[29]
Arnold M, Wang H, Feldhoff A. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes. Journal of Membrane Science, 2007, 293(1-2): 44–52
CrossRef Google scholar
[30]
Liang F, Jiang H, Luo H, Caro J, Feldhoff A. Phase stability and permeation behavior of a dead-end Ba0.5Sr0.5Co0.8Fe0.2O3−δ tube membrane in high-purity oxygen production. Chemistry of Materials, 2011, 23(21): 4765–4772
CrossRef Google scholar
[31]
Yoo C Y, Bouwmeester H J. Oxygen surface exchange kinetics of SrTi1−xFexO3−δ mixed conducting oxides. Physical Chemistry Chemical Physics, 2012, 14(33): 11759–11765
CrossRef Google scholar
[32]
Vente J F, McIntosh S, Haije W G, Bouwmeester H J. Properties and performance of BaxSr1−xCo0.8Fe0.2O3−δ materials for oxygen transport membranes. Journal of Solid State Electrochemistry, 2006, 10(8): 581–588
CrossRef Google scholar
[33]
Zhang Z, Chen D, Dong F, Xu X, Hao Y, Shao Z. Understanding the doping effect toward the design of CO2-tolerant Perovskite membranes with enhanced oxygen permeability. Journal of Membrane Science, 2016, 59: 11–21
CrossRef Google scholar
[34]
Zhang Z, Xu X, Zhang J, Chen D, Zeng D, Liu S, Zhou W, Shao Z. Silver-doped strontium niobium cobaltite as a new perovskite-type ceramic membrane for oxygen separation. Journal of Membrane Science, 2018, 563: 617–624
CrossRef Google scholar
[35]
Zhang Z, Zhou W, Chen Y, Chen D, Chen J, Liu S, Jin W, Shao Z. Novel approach for developing dual-phase ceramic membranes for oxygen separation through beneficial phase reaction. ACS Applied Materials & Interfaces, 2015, 7(41): 22918–22926
CrossRef Google scholar
[36]
He Y, Shi L, Wu F, Xie W, Wang S, Yan D, Liu P, Li M R, Caro J, Luo H. A novel dual phase membrane 40 wt-% Nd0.6Sr0.4CoO3–δ-60wt-% Ce0.9 Nd0.1O2–δ: Design, synthesis and properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(1): 84–92
CrossRef Google scholar
[37]
Luo H, Klande K, Cao Z, Liang F, Wang H, Caro J A. CO2-stable reduction-tolerant Nd-containing dual phase membrane for oxyfuel CO2 capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(21): 7780–7787
CrossRef Google scholar
[38]
Minervini L, Grimes R W, Kilner J A, Sickafus K E. Oxygen migration in La2NiO4+δ. Journal of Materials Chemistry, 2000, 10(10): 2349–2354
CrossRef Google scholar
[39]
Lee D, Lee H. Controlling oxygen mobility in Ruddlesden–Popper oxides. Materials (Basel), 2017, 10(4): 368
CrossRef Google scholar
[40]
Yashima M, Enoki M, Wakita T, Ali R, Matsushita Y, Izumi F, Ishihara T. Structural disorder and diffusional pathway of oxide ions in a doped Pr2NiO4-based mixed conductor. Journal of the American Chemical Society, 2008, 130(9): 2762–2763
CrossRef Google scholar
[41]
Klande T, Efimov K, Cusenza S, Becker K D, Feldhoff A. Effect of doping, microstructure, and CO2 on La2NiO4+δ-based oxygen-transporting materials. Journal of Solid State Chemistry, 2011, 184(12): 3310–3318
CrossRef Google scholar
[42]
Xue J, Liao Q, Chen W, Bouwmeester H J, Wang H, Feldhoff A. A new CO2-resistant Ruddlesden–Popper oxide with superior oxygen transport: A-site deficient (Pr0.9La0.1)1.9(Ni0.74Cu0.21Ga0.05)O4+δ. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(37): 19107–19114
CrossRef Google scholar
[43]
Chen Y, Liao Q, Wei Y, Li Z, Wang H A. CO2-stable K2NiF4-type oxide (Nd0.9La0.1)2(Ni0.74Cu0.21Al0.05)O4+δ for oxygen separation. Industrial & Engineering Chemistry Research, 2013, 52(25): 8571–8578
CrossRef Google scholar
[44]
Xue J, Schulz A, Wang H, Feldhoff A. The phase stability of the Ruddlesden-Popper type oxide (Pr0.9 La0.1)2.0Ni0.74Cu0.21Ga0.05O4+δ in an oxidizing environment. Journal of Membrane Science, 2016, 497: 357–364
CrossRef Google scholar
[45]
Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica. Section A, Crystal Physics, Diffraction, Theoretical and General Crystallography, 1976, 32(5): 751–767
CrossRef Google scholar
[46]
Chen G, Silva T, Georgieva V, Godfroid T, Britun N, Snyders R, Delplancke-Ogletree M P. Simultaneous dissociation of CO2 and H2O to syngas in a surface-wave microwave discharge. International Journal of Hydrogen Energy, 2015, 40(9): 3789–3796
CrossRef Google scholar

Acknowledgments

This work is part of the project “Plasma-induced CO2-conversion” (PiCK, project number: 03SFK2S3B) and financially supported by the German Federal Ministry of Education and Research in the framework of the “Kopernikus projects for the Energiewende”. The authors are thankful to B.Sc. Laura Steinle (University of Stuttgart) for her assistance during the CO stability tests, and Christine Stefani and Prof. Dr. Robert Dinnebier (Max Planck Institute for Solid State Research, Stuttgart) for the in situ PXRD measurements, respectively. G. C. thanks Frank Hack and Dr. Angelika Veziridis for their kind support during experiments and discussions.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11705-019-1886-0 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2122 KB)

Accesses

Citations

Detail

Sections
Recommended

/