Frontiers of Chemical Science and Engineering >
Towards an integrated modeling of the plasma-solid interface
Received date: 01 Aug 2018
Accepted date: 30 Oct 2018
Published date: 15 Jun 2019
Copyright
Solids facing a plasma are a common situation in many astrophysical systems and laboratory setups. Moreover, many plasma technology applications rely on the control of the plasma-surface interaction, i.e., of the particle, momentum and energy fluxes across the plasma-solid interface. However, presently often a fundamental understanding of them is missing, so most technological applications are being developed via trial and error. The reason is that the physical processes at the interface of a low-temperature plasma and a solid are extremely complex, involving a large number of elementary processes in the plasma, in the solid as well as fluxes across the interface. An accurate theoretical treatment of these processes is very difficult due to the vastly different system properties on both sides of the interface: Quantum versus classical behavior of electrons in the solid and plasma, respectively; as well as the dramatically differing electron densities, length and time scales. Moreover, often the system is far from equilibrium. In the majority of plasma simulations surface processes are either neglected or treated via phenomenological parameters such as sticking coefficients, sputter rates or secondary electron emission coefficients. However, those parameters are known only in some cases and with very limited accuracy. Similarly, while surface physics simulations have often studied the impact of single ions or neutrals, so far, the influence of a plasma medium and correlations between successive impacts have not been taken into account. Such an approach, necessarily neglects the mutual influences between plasma and solid surface and cannot have predictive power.
In this paper we discuss in some detail the physical processes of the plasma-solid interface which brings us to the necessity of coupled plasma-solid simulations. We briefly summarize relevant theoretical methods from solid state and surface physics that are suitable to contribute to such an approach and identify four methods. The first are mesoscopic simulations such as kinetic Monte Carlo and molecular dynamics that are able to treat complex processes on large scales but neglect electronic effects. The second are quantum kinetic methods based on the quantum Boltzmann equation that give access to a more accurate treatment of surface processes using simplifying models for the solid. The third approach are ab initio simulations of surface process that are based on density functional theory (DFT) and time-dependent DFT. The fourths are nonequilibrium Green functions that able to treat correlation effects in the material and at the interface. The price for the increased quality is a dramatic increase of computational effort and a restriction to short time and length scales. We conclude that, presently, none of the four methods is capable of providing a complete picture of the processes at the interface. Instead, each of them provides complementary information, and we discuss possible combinations.
Michael Bonitz , Alexey Filinov , Jan-Willem Abraham , Karsten Balzer , Hanno Kählert , Eckhard Pehlke , Franz X. Bronold , Matthias Pamperin , Markus Becker , Dettlef Loffhagen , Holger Fehske . Towards an integrated modeling of the plasma-solid interface[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 201 -237 . DOI: 10.1007/s11705-019-1793-4
1 |
Skiff F, Wurtele J. Plasma: At the Frontier of Science Discovery. Technical Report, U.S. Department of Energy, Office of Sciences, 2017
|
2 |
Meyyappan M. Plasma nanotechnology: Past, present and future. Journal of Physics. D, Applied Physics, 2011, 44(17): 174002
|
3 |
Ostrikov K, Neyts E C, Meyyappan M. Plasma nanoscience: From nano-solids in plasmas to nano-plasmas in solids. Advances in Physics, 2013, 62(2): 113–224
|
4 |
Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Physical Review Letters, 2006, 97(21): 216803
|
5 |
Prezzi D, Varsano D, Ruini A, Marini A, Molinari E. Optical properties of graphene nanoribbons: The role of many-body effects. Physical Review. B, 2008, 77(4): 041404
|
6 |
Adamovich I, Baalrud S D, Bogaerts A, Bruggeman P J, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden J G, Favia P,
|
7 |
Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models. Plasma Sources Science & Technology, 2005, 14(4): 722–733
|
8 |
Donko Z, Dyatko N. First-principles particle simulation and Boltzmann equation analysis of negative differential conductivity and transient negative mobility effects in xenon. European Physical Journal D, 2016, 70(6): 135
|
9 |
Teunissen J, Ebert U. 3D pic-mcc simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures. Plasma Sources Science & Technology, 2016, 25(4): 044005
|
10 |
Becker M M, Kählert H, Sun A, Bonitz M, Loffhagen D. Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges. Plasma Sources Science & Technology, 2017, 26(4): 044001
|
11 |
Derzsi A, Korolov I, Schüngel E, Donkó Z, Schulze J. Effects of fast atoms and energy-dependent secondary electron emission yields in PIC/MCC simulations of capacitively coupled plasmas. Plasma Sources Science & Technology, 2015, 24(3): 034002
|
12 |
Phelps A V, Petrović Z L. Cold-cathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons. Plasma Sources Science & Technology, 1999, 8(3): R21–R44
|
13 |
Brault P. Multiscale molecular dynamics simulation of plasma processing: Application to plasma sputtering. Frontiers in Physics, 2018, 6: 59
|
14 |
Zhao S, Kang W, Xue J, Zhang X, Zhang P. Comparison of electronic energy loss in graphene and BN sheet by means of time-dependent density functional theory. Journal of Physics Condensed Matter, 2015, 27(2): 025401
|
15 |
Balzer K, Schlünzen N, Bonitz M. Stopping dynamics of ions passing through correlated honeycomb clusters. Physical Review. B, 2016, 94(24): 245118
|
16 |
Graves D B, Brault P. Molecular dynamics for low temperature plasma—surface interaction studies. Journal of Physics. D, Applied Physics, 2009, 42(19): 194011
|
17 |
Neyts E C, Brault P. Molecular dynamics simulations for plasma-surface interactions. Plasma Processes and Polymers, 2017, 14(12): 1600145
|
18 |
Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D. Kinetic theory of plasma sheaths surrounding electron-emitting surfaces. Physical Review Letters, 2013, 111(7): 075002
|
19 |
Bronold F X, Fehske H. Absorption of an electron by a dielectric wall. Physical Review Letters, 2015, 115(22): 225001
|
20 |
Sun A, Becker M M, Loffhagen D. PIC/MCC simulation of capacitively coupled discharges in helium: Boundary effects. Plasma Sources Science & Technology, 2018, 27(5): 054002
|
21 |
Li Y, Go D B. Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions. Applied Physics Letters, 2013, 103(23): 234104
|
22 |
Helmholtz H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierischelektrischen Versuche. Annalen der Physik, 1853, 165(6): 211–233 (in German)
|
23 |
Heinisch R L, Bronold F X, Fehske H. Electron surface layer at the interface of a plasma and a dielectric wall. Physical Review. B, 2012, 85(7): 075323
|
24 |
Onida G, Reining L, Rubio A. Electronic excitations: Density-functional versus many-body green’s-function approaches. Reviews of Modern Physics, 2002, 74(2): 601–659
|
25 |
Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, Marianetti C A. Electronic structure calculations with dynamical mean-field theory. Reviews of Modern Physics, 2006, 78(3): 865–951
|
26 |
Foulkes W M C, Mitas L, Needs R J, Rajagopal G. Quantum monte carlo simulations of solids. Reviews of Modern Physics, 2001, 73(1): 33–83
|
27 |
Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions. Physics Reports, 2018, 744: 1–86
|
28 |
Abraham J W. Formation of metal-polymer nanocomposites by plasma-based deposition methods: Kinetic monte carlo and molecular dynamics simulations. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2018
|
29 |
Daniil M, Carlos T, Vasco G. Deterministic and monte carlo methods for simulation of plasma-surface interactions. Plasma Processes and Polymers, 2016, 14(1-2): 1600175
|
30 |
Guerra V, Loureiro J. Dynamical monte carlo simulation of surface atomic recombination. Plasma Sources Science & Technology, 2004, 13(1): 85–94
|
31 |
Abraham J W, Kongsuwan N, Strunskus T, Faupel F, Bonitz M. Simulation of nanocolumn formation in a plasma environment. Journal of Applied Physics, 2015, 117(1): 014305
|
32 |
Fujioka K. Kinetic Monte Carlo simulations of cluster growth in magnetron plasmas. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2015
|
33 |
Polonskyi O, Ahadi A M, Peter T, Fujioka K, Abraham J W, Vasiliauskaite E, Hinz A, Strunskus T, Wolf S, Bonitz M,et al.Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. European Physical Journal D, 2018, 72(5): 93
|
34 |
Rosenthal L. Monte Carlo simulations of metal-polymer nanocomposite formation. Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2013
|
35 |
Runge E, Gross E K U. Density-functional theory for time-dependent systems. Physical Review Letters, 1984, 52(12): 997–1000
|
36 |
Balzer K, Bonitz M. Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems. Berlin: Springer, 2013
|
37 |
Schlünzen N, Bonitz M. Nonequilibrium Green functions approach to strongly correlated fermions in lattice systems. Contributions to Plasma Physics, 2016, 56(1): 5–91
|
38 |
Marini A, Hogan C, Grüning M, Varsano D. Yambo: An ab initio tool for excited state calculations. Computer Physics Communications, 2009, 180(8): 1392–1403
|
39 |
Jürg H. Car—parrinello molecular dynamics. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2012, 2(4): 604–612
|
40 |
Gross A. Theoretical Surface Science. 2nd ed. Berlin: Springer, 2009
|
41 |
Bonitz M, Lopez J, Becker K, Thomsen H, eds. Complex plasmas: Scientific Challenges and Technological Opportunities . Berlin: Springer, 2014
|
42 |
Ott T, Bonitz M. Diffusion in a strongly coupled magnetized plasma. Physical Review Letters, 2011, 107(13): 135003
|
43 |
Abraham J W, Strunskus T, Faupel F, Bonitz M. Molecular dynamics simulation of gold cluster growth during sputter deposition. Journal of Applied Physics, 2016, 119(18): 185301
|
44 |
Nakano A, Kalia R K, Nomura K, Sharma A, Vashishta P, Shimojo F, van Duin A C T, Goddard W A, Biswas R, Srivastava D,
|
45 |
Piana S, Lindorff-Larsen K, Shaw D E. Atomic-level description of ubiquitin folding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5915–5920
|
46 |
Voter A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Physical Review Letters, 1997, 78(20): 3908–3911
|
47 |
Laio A, Parrinello M. Escaping free-energy minima. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12562–12566
|
48 |
Sørensen M R, Voter A F. Temperature-accelerated dynamics for simulation of infrequent events. Journal of Chemical Physics, 2000, 112(21): 9599–9606
|
49 |
Bal K M, Neyts E C. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. Journal of Chemical Theory and Computation, 2015, 11(10): 4545–4554
|
50 |
Bonitz M, Filinov A, Abraham J W, Loffhagen D. Extending first principle plasma-surface simulations to experimentally relevant scales. Plasma Sources Science & Technology, 2018, 27(6): 064005
|
51 |
Abraham J W, Bonitz M. Molecular dynamics simulation of Ag–Cu cluster growth on a thin polymer film. Contributions to Plasma Physics, 2018, 58(2-3): 164–173
|
52 |
Franke A, Pehlke E. Diffusion of 1,4-butanedithiol on Au(100)(1x1): A DFT-based master-equation approach. Physical Review. B, 2010, 82(20): 205423
|
53 |
Filinov A, Bonitz M, Loffhagen D. Microscopic modeling of gas-surface scattering. I. A combined molecular dynamics-rate equation approach. Plasma Sources Science & Technology, 2018, 27(6): 064003
|
54 |
Schwartzkopf M, Santoro G, Brett C J, Rothkirch A, Polonskyi O, Hinz A, Metwalli E, Yao Y, Strunskus T, Faupel F, et al. Real-time monitoring of morphology and optical properties during sputter deposition for tailoring metal-polymer interfaces. ACS Applied Materials & Interfaces, 2015, 7(24): 13547–13556
|
55 |
Abraham J W, Hinz A, Strunskus T, Faupel F, Bonitz M. Formation of polymer-based nanoparticles and nanocomposites by plasma-assisted deposition methods. European Physical Journal D, 2018, 72(5): 92
|
56 |
Bonitz M. Quantum Kinetic Theory. 2nd ed. Berlin: Springer, 2016
|
57 |
Filinov A, Bonitz M, Loffhagen D. Microscopic modeling of gas-surface scattering: II. Application to argon atom adsorption on a platinum (111) surface. Plasma Sources Science & Technology, 2018, 27(6): 064002
|
58 |
Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing. New York: Wiley-Interscience, 2005
|
59 |
Rabalais J W. Low Energy Ion-surface Interaction. New York: Wiley and Sons, 1994
|
60 |
Winter H. Collision of atoms and ions with surfaces under grazing incidence. Physics Reports, 2002, 367(5): 387–582
|
61 |
Winter H P, Burgdörfer J. Slow Heavy-particle Induced Electron Emission from Solid Surfaces. Berlin: Springer, 2007
|
62 |
Daksha M, Berger B, Schuengel E, Korolov I, Derzsi A, Koepke M, Donko Z, Schulze J. A computationally assisted spectroscopic technique to measure secondary electron emission coefficients in radio frequency plasmas. Journal of Physics. D, Applied Physics, 2016, 49(23): 234001
|
63 |
Marcak A, Corbella C, de los Arcos T, von Keudell A. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor. Review of Scientific Instruments, 2015, 86(10): 106102
|
64 |
More W, Merino J, Monreal R, Pou P, Flores F. Role of energy-level shifts on auger neutralization processes: A calculation beyond the image potential. Physical Review. B, 1998, 58(11): 7385–7390
|
65 |
Newns D M, Makoshi K, Brako R, van Wunnik J N M. Charge transfer in inelastic ion and atom-surface collisions. Physica Scripta, 1983, T6: 5–14
|
66 |
Yoshimori A, Makoshi K. Time-dependent Newns-Anderson model. Progress in Surface Science, 1986, 21(3): 251–294
|
67 |
Los J, Geerlings J J C. Charge exchange in atom-surface collisions. Physics Reports, 1990, 190(3): 133–190
|
68 |
Pamperin M, Bronold F X, Fehske H. Ion-induced secondary electron emission from metal surfaces. Plasma Sources Science & Technology, 2018, 27(8): 084003
|
69 |
Wang N P, García E A, Monreal R, Flores F, Goldberg E C, Brongersma H H, Bauer P. Low-energy ion neutralization at surfaces: Resonant and auger processes. Physical Review A., 2001, 64(1): 012901
|
70 |
Valdés D, Goldberg E C, Blanco J M, Monreal R C. Linear combination of atomic orbitals calculation of the auger neutralization rate of He+ on Al(111), (100), and (110) surfaces. Physical Review. B, 2005, 71(24): 245417
|
71 |
Marbach J, Bronold F X, Fehske H. Resonant charge transfer at dielectric surfaces. European Physical Journal D, 2012, 66(4): 106
|
72 |
Marbach J, Bronold F X, Fehske H. Pseudoparticle approach for charge-transferring molecule-surface collisions. Physical Review. B, 2012, 86(11): 115417
|
73 |
Iglesias-García A, García E A, Goldberg E C. Role of He excited configurations in the neutralization of He+ ions colliding with a HOPG surface. Physical Review. B, 2013, 87(7): 075434
|
74 |
Iglesias-García A, García E A, Goldberg E C. Importance of considering helium excited states in He+ scattering by aluminum surfaces. Physical Review. B, 2014, 90(19): 195416
|
75 |
Pamperin M, Bronold F X, Fehske H. Many-body theory of the neutralization of strontium ions on gold surfaces. Physical Review. B, 2015, 91(3): 035440
|
76 |
Pamperin M, Bronold F X, Fehske H. Mixed-valence correlations in charge-transferring atom–surface collisions. Physica Scripta, 2015, T165: 014008
|
77 |
Gadzuk J W. Theory of atom-metal interactions I. Alkali atom adsorption. Surface Science, 1967, 6(2): 133–158
|
78 |
Gadzuk J W. Theory of atom-metal interactions II. One-electron transition matrix elements. Surface Science, 1967, 6(2): 159–170
|
79 |
Propst F M. Energy distribution of electrons ejected from tungsten by He+. Physical Review, 1963, 129(1): 7–11
|
80 |
Penn D R, Apell P. Theory of spin-polarized metastable-atomdeexcitation spectroscopy: Ni–He. Physical Review. B, 1990, 41(6): 3303–3315
|
81 |
Langreth D C, Nordlander P. Derivation of a master equation for charge-transfer processes in atom-surface collisions. Physical Review. B, 1991, 43(4): 2541–2557
|
82 |
Shao H, Langreth D C, Nordlander P. Many-body theory for charge transfer in atom-surface collisions. Physical Review. B, 1994, 49(19): 13929–13947
|
83 |
Shao H, Langreth D C, Nordlander P. Theoretical description of charge transfer in atom-surface collisions. In Rabalais J W, ed. Low Energy Ion-surface Interaction. New York: Wiley and Sons, 1994, 117
|
84 |
Marx D, Hutter J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge: Cambridge University Press, 2009
|
85 |
Hafner J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry, 2008, 29(13): 2044–2078
|
86 |
Groß A. Ab initio molecular dynamics simulations of the O2/Pt(111) interaction. Catalysis Today, 2016, 260: 60–65
|
87 |
Kühne T D. Second generation car–parrinello molecular dynamics. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2014, 4(4): 391–406
|
88 |
Baer M. Beyond Born-Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections. New-York: Wiley-Interscience, 2006
|
89 |
Nosé S. A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511–519
|
90 |
Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978–9985
|
91 |
Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
|
92 |
Vineyard G H. Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957, 3(1): 121–127
|
93 |
Laio A, Gervasio F L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Physics, 2008, 71(12): 126601
|
94 |
Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press, 2004
|
95 |
Burke K. Perspective on density functional theory. Journal of Chemical Physics, 2012, 136(15): 150901
|
96 |
Becke A D. Perspective: Fifty years of density-functional theory in chemical physics. The Journal of Chemical Physics, 2014, 140(18): 18A301
|
97 |
Yu H S, Li S L, Truhlar D G. Perspective: Kohn-Sham density-functional theory descending a staircase. Journal of Chemical Physics, 2016, 145(13): 130901
|
98 |
Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871
|
99 |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133–A1138
|
100 |
Klimes J, Michaelides A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. Journal of Chemical Physics, 2012, 137(12): 120901
|
101 |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review. B, 1992, 46(11): 6671–6687
|
102 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
|
103 |
Tao J, Perdew J P, Staroverov V N, Scuseria G E. Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Physical Review Letters, 2003, 91(14): 146401
|
104 |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996, 6(1): 15–50
|
105 |
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review. B, 1993, 47(1): 558–561
|
106 |
Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review. B, 1994, 49(20): 14251–14269
|
107 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review. B, 1996, 54(16): 11169–11186
|
108 |
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I,
|
109 |
Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M,
|
110 |
Mattsson A E, Schultz P A, Desjarlais M P, Mattsson T R, Leung K. Designing meaningful density functional theory calculations in material science—a primer. Modelling and Simulation in Materials Science and Engineering, 2005, 13(1): R1–R31
|
111 |
Hamann D R. Generalized norm-conserving pseudopotentials. Physical Review. B, 1989, 40(5): 2980–2987
|
112 |
Trouiller N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Physical Review. B, 1991, 43(3): 1993–2006
|
113 |
Fuchs M, Scheffler M. Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 1999, 119(1): 67–98
|
114 |
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review. B, 1990, 41(11): 7892–7895
|
115 |
Blöchl P E. Projector augmented-wave method. Physical Review. B, 1994, 50(24): 17953–17979
|
116 |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review. B, 1999, 59(3): 1758–1775
|
117 |
Modinos A. Resonance charge transfer in atom-surface scattering. Progress in Surface Science, 1987, 26(1): 19–46
|
118 |
Brako R, Newns D M. Theory of electronic processes in atom scattering from surfaces. Reports on Progress in Physics, 1989, 52(6): 655–697
|
119 |
Kimmel G A, Cooper B H. Dynamics of resonant charge transfer in low-energy alkali-metal-ion scattering. Physical Review. B, 1993, 48(16): 12164–12177
|
120 |
Winter H. Collisions of atoms and ions with surfaces under grazing incidence. Physics Reports, 2002, 367(5): 387–582
|
121 |
Race C P, Mason D R, Finnis M W, Foulkes W M C, Horsfield A P, Sutton A P. The treatment of electronic excitations in atomistic models of radiation damage in metals. Reports on Progress in Physics, 2010, 73(11): 116501
|
122 |
Wucher A, Duvenbeck A. Kinetic excitation of metallic solids: Progress towards a microscopic model. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2011, 269(14): 1655–1660
|
123 |
Lindenblatt M, Pehlke E, Duvenbeck A, Rethfeld B, Wucher A. Kinetic excitation of solids: The concept of electronic friction. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2006, 246(2): 333–339
|
124 |
Nienhaus H. Electronic excitations by chemical reactions on metal surfaces. Surface Science Reports, 2002, 45(1): 1–78
|
125 |
Diesing D, Hasselbrink E. Chemical energy dissipation at surfaces under uhv and high pressure conditions studied using metal-insulator-metal and similar devices. Chemical Society Reviews, 2016, 45(13): 3747–3755
|
126 |
Bünermann O, Jiang H, Dorenkamp Y, Kandratsenka A, Janke S M, Auerbach D J, Wodtke A M. Electron-hole pair excitation determines the mechanism of hydrogen atom adsorption. Science, 2015, 350(6266): 1346–1349
|
127 |
Wodtke A M. Electronically non-adiabatic influences in surface chemistry and dynamics. Chemical Society Reviews, 2016, 45(13): 3641–3657
|
128 |
Rittmeyer S P, Meyer J, Juaristi J I, Reuter K. Electronic friction-based vibrational lifetimes of molecular adsorbates: Beyond the independent-atom approximation. Physical Review Letters, 2015, 115(4): 046102
|
129 |
Rittmeyer S P, Bukas V J, Reuter K. Energy dissipation at metal surfaces. Advances in Physics: X, 2018, 3(1): 1381574
|
130 |
Alducin M, Muiño R D, Juaristi J I. Non-adiabatic effects in elementary reaction processes at metal surfaces. Progress in Surface Science, 2017, 92(4): 317–340
|
131 |
Janke S M, Auerbach D J, Wodtke A M, Kandratsenka A. An accurate full-dimensional potential energy surface for H-Au(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption. Journal of Chemical Physics, 2015, 143(12): 124708
|
132 |
Kroes G J, Pavanello M, Blanco-Rey M, Alducin M, Auerbach D J. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111). Journal of Chemical Physics, 2014, 141(5): 054705
|
133 |
Monturet S, Saalfrank P. Role of electronic friction during the scattering of vibrationally excited nitric oxide molecules from Au(111). Physical Review. B, 2010, 82(7): 075404
|
134 |
Mizielinski M S, Bird D M, Persson M, Holloway S. Electronic nonadiabatic effects in the adsorption of hydrogen atoms on metals. Journal of Chemical Physics, 2005, 122(8): 084710
|
135 |
Mizielinski M S, Bird D M, Persson M, Holloway S. Spectrum of electronic excitations due to the adsorption of atoms on metal surfaces. Journal of Chemical Physics, 2007, 126(3): 034705
|
136 |
Mizielinski M S, Bird D M, Persson M, Holloway S. Newnsanderson model of chemicurrents in H/Cu and H/Ag. Surface Science, 2008, 602(14): 2617–2622
|
137 |
Mizielinski M S, Bird D M. Accuracy of perturbation theory for nonadiabatic effects in adsorbate-surface dynamics. Journal of Chemical Physics, 2010, 132(18): 184704
|
138 |
Bird D M, Mizielinski M S, Lindenblatt M, Pehlke E. Electronic excitation in atomic adsorption on metals: A comparison of ab initio and model calculations. Surface Science, 2008, 602(6): 1212–1216
|
139 |
Lindenblatt M, van Heys J, Pehlke E. Molecular dynamics of nonadiabatic processes at surfaces: Chemisorption of H/Al(111). Surface Science, 2006, 600(18): 3624–3628
|
140 |
Lindenblatt M, Pehlke E. Time-dependent density-functional molecular-dynamics study of the isotope effect in chemicurrents. Surface Science, 2006, 600(23): 5068–5073
|
141 |
Lindenblatt M, Pehlke E. Ab initio simulation of the spin transition during chemisorption: H/Al(111). Physical Review Letters, 2006, 97(21): 216101
|
142 |
Grotemeyer M, Pehlke E. Electronic energy dissipation during scattering of vibrationally excited molecules at metal surfaces: Ab initio simulations for HCl/Al(111). Physical Review Letters, 2014, 112(4): 043201
|
143 |
Timmer M, Kratzer P. Electron-hole spectra created by adsorption on metals from density functional theory. Physical Review. B, 2009, 79(16): 165407
|
144 |
Zhao S, Kang W, Xue J, Zhang X, Zhang P H. + (D+,T+) beryllium collisions studied using time-dependent density functional theory. Physics Letters, 2015, 379(4): 319–326 (Part A)
|
145 |
Moss C L, Isborn C M, Li X. Ehrenfest dynamics with a time-dependent density-functional-theory calculation of lifetimes and resonant widths of charge-transfer states of Li+ near an aluminum cluster surface. Physical Review A., 2009, 80(2): 024503
|
146 |
Castro A, Isla M, Martínez J I, Alonso J A. Scattering of a proton with the Li4 cluster: Non-adiabatic molecular dynamics description based on time-dependent density-functional theory. Chemical Physics, 2012, 399: 130–134
|
147 |
Krasheninnikov A V, Miyamoto Y, Tománek D. Role of electronic excitation in ion collisions with carbon nanostructures. Physical Review Letters, 2007, 99(1): 016104
|
148 |
Bubin S, Wang B, Pantelides S, Varga K. Simulation of high-energy ion collisions with graphene fragments. Physical Review. B, 2012, 85(23): 235435
|
149 |
Ojanperä A, Krasheninnikov A V, Puska M. Electronic stopping power from first-principles calculations with account for core electron excitations and projectile ionization. Physical Review. B, 2014, 89(3): 035120
|
150 |
Wang Z, Li S S, Wang L W. Efficient real-time time-dependent density functional theory method and its application to collision of an ion with a 2D material. Physical Review Letters, 2015, 114(6): 063004
|
151 |
Yost D C, Yao Y, Kanai Y. Examining real-time time-dependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power. Physical Review. B, 2017, 96(11): 115134
|
152 |
Schleife A, Kanai Y, Correa A A. Accurate atomistic first-principles calculations of electronic stopping. Physical Review. B, 2015, 91(1): 014306
|
153 |
Correa A A, Kohanoff J, Artacho E, Sánchez-Portal D, Caro A. Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage. Physical Review Letters, 2012, 108(21): 213201
|
154 |
Zeb M A, Kohanoff J, Sánchez-Portal D, Arnau A, Juaristi J I, Artacho E. Electronic stopping power in gold: The role of d electrons and the H/He anomaly. Physical Review Letters, 2012, 108(22): 225504
|
155 |
Ullah R, Corsetti F, Sánchez-Portal D, Artacho E. Electronic stopping power in narrow band gap semiconductor from first principles. Physical Review. B, 2015, 91(12): 125203
|
156 |
Time-dependent Density Functional Theory. M arques M A L, Ullrich C A, Nogueira F, Rubio A, Burke K, Gross E K U, eds. Berlin: Springer, 2006
|
157 |
Fundamentals of Time-Dependent Density Functional Theory. Marques M A L, Maitra N T, Nogueira F M S, Gross E K U, Rubio A, eds. Berlin: Springer, 2012
|
158 |
Ullrich C A. Time-Dependent Density-Functional Theory. Oxford: Oxford University Press, 2012
|
159 |
Ullrich C A, Yang Z H. A brief compendium of time-dependent density functional theory. Brazilian Journal of Physics, 2014, 44(1): 154–158
|
160 |
Maitra N T. Perspective: Fundamental aspects of time-dependent density functional theory. Journal of Chemical Physics, 2016, 144(22): 220901
|
161 |
Runge E, Gross E K U. Density-functional theory for time-dependent systems. Physical Review Letters, 1984, 52(12): 997–1000
|
162 |
Gross E K U, Kohn W. Local density-functional theory of frequency-dependent linear response. Physical Review Letters, 1985, 55(26): 2850–2852
|
163 |
Provorse M R, Isborn C M. Electron dynamics with real-time time-dependent density functional theory. International Journal of Quantum Chemistry, 2016, 116(10): 739–749
|
164 |
Nagano R, Yabana K, Tazawa T, Abe Y. Time-dependent mean-field description for multiple charge transfer processes in Ar8+–Ar collisions. Physical Review A., 2000, 62(6): 062721
|
165 |
Nazarov V U, Pitarke J M, Takada Y, Vignale G, Chang Y C. Including nonlocality in the exchange-correlation kernel from time-dependent current density functional theory: Application to the stopping power of electron liquids. Physical Review. B, 2007, 76(20): 205103
|
166 |
Tully J C. Molecular dynamics with electronic transitions. Journal of Chemical Physics, 1990, 93(2): 1061–1071
|
167 |
Shenvi N, Roy S, Tully J C. Nonadiabatic dynamics at metal surfaces: Independent-electron surface hopping. Journal of Chemical Physics, 2009, 130(17): 174107
|
168 |
Marques M A L, Castro A, Bertsch G F, Rubio A. Octopus: A first-principles tool for excited electron-ion dynamics. Computer Physics Communications, 2003, 151(1): 60–78
|
169 |
Foglia N O, Morzan U N, Estrin D A, Scherlies D A, Lebrero M C G. Role of core electrons in quantum dynamics using TDDFT. Journal of Chemical Theory and Computation, 2017, 13(1): 77–85
|
170 |
Avendaño Franco G. Charge transfer processes in atomic collisions from first principles. Dissertation for the Doctoral Degree. Louvain-la-Neuve: Université Catholique de Louvain, 2013
|
171 |
German K A H, Weare C B, Yarmoff J A. Inner-shell promotions in low-energy Li+–Al collisions at clean and alkali-covered Al(100) surfaces. Physical Review. B, 1994, 50(19): 14452–14466
|
172 |
Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, Rubio A. Octopus: A tool for the application of time-dependent density functional theory. Physica Status Solidi. B, Basic Research, 2006, 243(11): 2465–2488
|
173 |
Andrade X, Strubbe D, De Giovannini U, Larsen A H, Oliveira M J T, Alberdi-Rodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J,
|
174 |
Shukri A A, Bruneval F, Reining L. Ab initio electronic stopping power of protons in bulk materials. Physical Review. B, 2016, 93(3): 035128
|
175 |
Markin S N, Primetzhofer D, Spitz M, Bauer P. Electronic stopping of low-energy H and He in Cu and Au investigated by timeof-flight low-energy ion scattering. Physical Review. B, 2009, 80(20): 205105
|
176 |
Mason D R, le Page J, Race C P, Foulkes W M C, Finnis M W, Sutton A P. Electronic damping of atomic dynamics in irradiation damage of metals. Journal of Physics Condensed Matter, 2007, 19(43): 436209
|
177 |
Grotemeyer M K. Ab initio Berechnungen zur Anregung von Elektronen-Loch-Paaren durch Molekülschwingungen am Beispiel von HCl auf Al(111). Dissertation for the Doctoral Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2016 (in German)
|
178 |
D’Agosta R, Di Ventra M. Foundations of stochastic time-dependent current-density functional theory for open quantum systems: Potential pitfalls and rigorous results. Physical Review. B, 2013, 87(15): 155129
|
179 |
Ullrich C A. Time-dependent density-functional theory beyond the adiabatic approximation: Insights from a two-electron model system. Journal of Chemical Physics, 2006, 125(23): 234108
|
180 |
Kapoor V. Autoionization in time-dependent density-functional theory. Physical Review. A, 2016, 93(6): 063408
|
181 |
Lorente N, Monreal R, Alducin M. Local theory of auger neutralization for slow and compact ions interacting with metal surfaces. Physical Review A., 1994, 49(6): 4716–4725
|
182 |
Monreal R C. Auger neutralization and ionization processes for charge exchange between slow noble gas atoms and solid surfaces. Progress in Surface Science, 2014, 89(1): 80–125
|
183 |
Balzer K, Rasmussen M, Schlünzen N, Joost J P, Bonitz M. Doublon formation by ions impacting a strongly correlated finite lattice system. Physical Review Letters, 2018, 121(26): 267602
|
184 |
Keldysh L. Diagram technique for nonequilibrium processes. . Soviet Physics, JETP, 1965, 20(4): 1018–1026
|
185 |
Kadanoff L, Baym G. Quantum Statistical Mechanics. New York: Benjamin, 1962
|
186 |
Bonitz M, Kremp D. Kinetic energy relaxation and correlation time of nonequilibrium many-particle systems. Physics Letters, 1996, 212(1-2): 83–90 (Part A)
|
187 |
Bonitz M, Kremp D, Scott D C, Binder R, Kraeft W D, Köhler H S. Numerical analysis of non-Markovian effects in charge-carrier scattering: One-time versus two-time kinetic equations. Journal of Physics Condensed Matter, 1996, 8(33): 6057–6071
|
188 |
Bonitz M. Correlation time approximation in non-markovian kinetics. Physics Letters, 1996, 221(1-2): 85–93 (Part A)
|
189 |
Kremp D, Bonitz M, Kraeft W, Schlanges M. Non-Markovian Boltzmann equation. Annals of Physics, 1997, 258(2): 320–359
|
190 |
Danielewicz P. Quantum theory of nonequilibrium processes ii. Application to nuclear collisions. Annals of Physics, 1984, 152(2): 305–326
|
191 |
Köhler H S. Memory and correlation effects in nuclear collisions. Physical Review. C, 1995, 51(6): 3232–3239
|
192 |
Bányai L, Thoai D B T, Reitsamer E, Haug H, Steinbach D, Wehner M U, Wegener M, Marschner T, Stolz W. Exciton–lophonon quantum kinetics: Evidence of memory effects in bulk gaas. Physical Review Letters, 1995, 75(11): 2188–2191
|
193 |
Kwong N, Bonitz M, Binder R, Köhler H. Semiconductor Kadanoff-Baym equations results for optically excited electron-hole plasmas semiconductor quantum wells. Physica Status Solidi. B, Basic Research, 1998, 206: 197
|
194 |
Binder R, Köhler H S, Bonitz M, Kwong N. Green’s function description of momentum-orientation relaxation of photoexcited electron plasmas in semiconductors. Physical Review. B, 1997, 55(8): 5110–5116
|
195 |
Bonitz M, Balzer K, van Leeuwen R. Invariance of the Kohn center-of-mass mode in a conserving theory. Physical Review. B, 2007, 76(4): 045341
|
196 |
Balzer K, Bonitz M, van Leeuwen R, Stan A, Dahlen N E. Nonequilibrium Green’s function approach to strongly correlated few-electron quantum dots. Physical Review. B, 2009, 79(24): 245306
|
197 |
Kremp D, Bornath T, Bonitz M, Schlanges M. Quantum kinetic theory of plasmas in strong laser fields. Physical Review. E, 1999, 60(4): 4725–4732
|
198 |
Bonitz M, Bornath T, Kremp D, Schlanges M, Kraeft W D. Quantum kinetic theory for laser plasmas. Dynamical screening in strong fields. Contributions to Plasma Physics, 1999, 39(4): 329–347
|
199 |
Stefanucci G, van Leeuwen R. Nonequilibrium Many-body Theory of Quantum Systems. Cambridge: Cambridge University Press, 2013
|
200 |
Balzer K, Bauch S, Bonitz M. Efficient grid-based method in nonequilibrium Green’s function calculations: Application to model atoms and molecules. Physical Review A., 2010, 81(2): 022510 doi:10.1103/PhysRevA.81.022510
|
201 |
Balzer K, Bauch S, Bonitz M. Time-dependent second-order Born calculations for model atoms and molecules in strong laser fields. Physical Review A., 2010, 82(3): 033427
|
202 |
Verdozzi C, Wacker A, Almbladh C O, Bonitz M. Progress in nonequilibrium Green’s functions (PNGF VI). Journal of Physics: Conference Series, 2016, 696(1): 011001
|
203 |
Schlünzen N, Hermanns S, Bonitz M, Verdozzi C. Dynamics of strongly correlated fermions: Ab initio results for two and three dimensions. Physical Review. B, 2016, 93(3): 035107
|
204 |
Bonitz M, Scharnke M, Schlünzen N. Time-reversal invariance of quantum kinetic equations II: Density operator formalism. Contributions to Plasma Physics, 2018, 58(10): 58
|
205 |
TRIM and SRIM code packages. Available at the website of srim.org (accessed March 11, 2019)
|
206 |
Heese S. Dielectric function of graphene with yambo. Dissertation for the Bachelor Degree. Kiel: Christian-Albrechts-Universität zu Kiel, 2017
|
207 |
Bonitz M, Balzer K, Schlünzen N, Rodriguez Rasmussen M, Joost J P. Ion Impact Induced Ultrafast Electron Dynamics in Correlated Materials and Finite Graphene Clusters. Physica Status Solidi, 2019, 1800490: (b)
|
208 |
Pamperin M, Bronold F X, Fehske H. Many-body theory of the neutralization of strontium ions on gold surfaces. Physical Review. B, 2015, 91(3): 035440
|
209 |
Brenig W. Theory of inelastic atom-surface scattering: Average energy loss and energy distribution. Zeitschrift für Physik B, Condensed Matter, 1979, 36(1): 81–87
|
210 |
Bonitz M, Rosenthal L, Fujioka K, Zaporojtchenko V, Faupel F, Kersten H. Towards a particle based simulation of complex plasma driven nanocomposite formation. Contributions to Plasma Physics, 2012, 52(10): 890–898
|
211 |
Brenig W, Pehlke E. Reaction dynamics of H2 on Si. Ab initio supported model calculations. Progress in Surface Science, 2008, 83(5): 263–336
|
212 |
Bronold F X, Fehske H. Kinetic modeling of the electronic response of a plasma-facing solid. Journal of Physics. D, Applied Physics, 2017, 50(29): 294003
|
213 |
Langmuir I, Mott-Smith H. Studies of electric discharges in gases at low pressure. General Electric Review, 1924, 27: 449
|
214 |
Robertson S. Sheaths in laboratory and space plasmas. Plasma Physics and Controlled Fusion, 2013, 55(9): 093001
|
215 |
Brinkmann R P. From electron depletion to quasi-neutrality: The sheath-bulk transition in rf modulated discharges. Journal of Physics. D, Applied Physics, 2009, 42(19): 194009
|
216 |
Franklin R N. The plasma-sheath boundary region. Journal of Physics. D, Applied Physics, 2003, 36(22): R309–R320
|
217 |
Riemann K U. The Bohm criterion and sheath formation. Journal of Physics. D, Applied Physics, 1991, 24(4): 493–518
|
218 |
Schwager L A, Birdsall C K. Collector and source sheaths of a finite ion temperature plasma. Physics of Fluids. B, Plasma Physics, 1990, 2(5): 1057–1068
|
219 |
Campanell M D, Umansky M V. Strongly emitting surfaces unable to float below plasma potential. Physical Review Letters, 2016, 116(8): 085003
|
220 |
Langendorf S, Walker M. Effect of secondary electron emission on the plasma sheath. Physics of Plasmas, 2015, 22(3): 033515
|
221 |
Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D. Kinetic theory of plasma sheaths surrounding electron-emitting surfaces. Physical Review Letters, 2013, 111(7): 075002
|
222 |
Sydorenko D, Kaganovich I D, Raitses Y, Smolyakov A. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission. Physical Review Letters, 2009, 103(14): 145004
|
223 |
Taccogna F, Longo S, Capitelli M. Plasma-surface interaction model with secondary electron emission effects. Physics of Plasmas, 2004, 11(3): 1220–1228
|
224 |
Hu P N, Ziering S. Collisionless theory of a plasma sheath near an electrode. Physics of Fluids, 1966, 9(11): 2168–2179
|
225 |
Franklin R N. Plasma Phenomena in Gas Discharges. Oxford: Clarendon Press, 1976
|
226 |
Becker M M, Grubert G K, Loffhagen D. Boundary conditions for the electron kinetic equation using expansion techniques. European Physical Journal Applied Physics, 2010, 51(1): 11001
|
227 |
Kushner M J. Modeling of microdischarge devices: Pyramidal structures. Journal of Applied Physics, 2004, 95(3): 846–859
|
228 |
Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F. Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. Journal of Physics. D, Applied Physics, 2002, 35(8): 751–761
|
229 |
Dussart R, Overzet L J, Lefaucheux P, Dufour T, Kulsreshath M, Mandra M A, Tillocher T, Aubry O, Dozias S, Ranson P,
|
230 |
Kulsreshath M K, Schwaederle L, Overzet L J, Lefaucheux P, Ladroue J, Tillocher T, Aubry O, Woytasik M, Schelcher G, Dussart R. Study of dc micro-discharge arrays made in silicon using cmos compatible technology. Journal of Physics. D, Applied Physics, 2012, 45(28): 285202
|
231 |
Eden J G, Park S J, Cho J H, Kim M H, Houlahan T J, Li B, Kim E S, Kim T L, Lee S K, Kim K S,
|
232 |
Tchertchian P A, Wagner C J, Houlahan T J Jr, Li B, Sievers D J, Eden J G. Control of the interface between electron-hole and electron-ion plasmas: Hybrid semiconductor-gas phase devices as a gateway for plasma science. Contributions to Plasma Physics, 2011, 51(10): 889–905
|
233 |
Ostrom N P, Eden J G. Microcavity plasma photodetectors: Photosensitivity, dynamic range, and the plasma-semiconductor interface. Applied Physics Letters, 2005, 87(14): 141101
|
234 |
Sternovsky Z. The effect of ion-neutral collisions on the weakly collisional plasma-sheath and the reduction of the ion flux to the wall. Plasma Sources Science & Technology, 2005, 14(1): 32–35
|
235 |
Riemann K U. Kinetic analysis of the collisional plasma-sheath transition. Journal of Physics. D, Applied Physics, 2003, 36(22): 2811–2820
|
236 |
Sheridan T E, Goree J. Collisional plasma sheath model. Physics of Fluids. B, Plasma Physics, 1991, 3(10): 2796–2804
|
237 |
Tsankov T V, Czarnetzki U. Information hidden in the velocity distribution of ions and the exact kinetic bohm criterion. Plasma Sources Science & Technology, 2017, 26(5): 055003
|
238 |
Lacroix D, Hermanns S, Hinz C M, Bonitz M. Ultrafast dynamics of finite Hubbard clusters: A stochastic mean-field approach. Physical Review. B, 2014, 90(12): 125112
|
239 |
Hopjan M, Karlsson D, Ydman S, Verdozzi C, Almbladh C O. Merging features from green’s functions and time dependent density functional theory: A route to the description of correlated materials out of equilibrium? Physical Review Letters, 2016, 116(23): 236402
|
/
〈 | 〉 |