Towards an integrated modeling of the plasmasolid interface
Michael Bonitz, Alexey Filinov, JanWillem Abraham, Karsten Balzer, Hanno Kählert, Eckhard Pehlke, Franz X. Bronold, Matthias Pamperin, Markus Becker, Dettlef Loffhagen, Holger Fehske
Towards an integrated modeling of the plasmasolid interface
Solids facing a plasma are a common situation in many astrophysical systems and laboratory setups. Moreover, many plasma technology applications rely on the control of the plasmasurface interaction, i.e., of the particle, momentum and energy fluxes across the plasmasolid interface. However, presently often a fundamental understanding of them is missing, so most technological applications are being developed via trial and error. The reason is that the physical processes at the interface of a lowtemperature plasma and a solid are extremely complex, involving a large number of elementary processes in the plasma, in the solid as well as fluxes across the interface. An accurate theoretical treatment of these processes is very difficult due to the vastly different system properties on both sides of the interface: Quantum versus classical behavior of electrons in the solid and plasma, respectively; as well as the dramatically differing electron densities, length and time scales. Moreover, often the system is far from equilibrium. In the majority of plasma simulations surface processes are either neglected or treated via phenomenological parameters such as sticking coefficients, sputter rates or secondary electron emission coefficients. However, those parameters are known only in some cases and with very limited accuracy. Similarly, while surface physics simulations have often studied the impact of single ions or neutrals, so far, the influence of a plasma medium and correlations between successive impacts have not been taken into account. Such an approach, necessarily neglects the mutual influences between plasma and solid surface and cannot have predictive power.
In this paper we discuss in some detail the physical processes of the plasmasolid interface which brings us to the necessity of coupled plasmasolid simulations. We briefly summarize relevant theoretical methods from solid state and surface physics that are suitable to contribute to such an approach and identify four methods. The first are mesoscopic simulations such as kinetic Monte Carlo and molecular dynamics that are able to treat complex processes on large scales but neglect electronic effects. The second are quantum kinetic methods based on the quantum Boltzmann equation that give access to a more accurate treatment of surface processes using simplifying models for the solid. The third approach are ab initio simulations of surface process that are based on density functional theory (DFT) and timedependent DFT. The fourths are nonequilibrium Green functions that able to treat correlation effects in the material and at the interface. The price for the increased quality is a dramatic increase of computational effort and a restriction to short time and length scales. We conclude that, presently, none of the four methods is capable of providing a complete picture of the processes at the interface. Instead, each of them provides complementary information, and we discuss possible combinations.
plasma physics / surface science / plasma surface modeling / DFT / nonequilibrium Green functions
[1] 
Skiff F, Wurtele J. Plasma: At the Frontier of Science Discovery. Technical Report, U.S. Department of Energy, Ofﬁce of Sciences, 2017

[2] 
Meyyappan M. Plasma nanotechnology: Past, present and future. Journal of Physics. D, Applied Physics, 2011, 44(17): 174002
CrossRef
Google scholar

[3] 
Ostrikov K, Neyts E C, Meyyappan M. Plasma nanoscience: From nanosolids in plasmas to nanoplasmas in solids. Advances in Physics, 2013, 62(2): 113–224
CrossRef
Google scholar

[4] 
Son Y W, Cohen M L, Louie S G. Energy gaps in graphene nanoribbons. Physical Review Letters, 2006, 97(21): 216803
CrossRef
Google scholar

[5] 
Prezzi D, Varsano D, Ruini A, Marini A, Molinari E. Optical properties of graphene nanoribbons: The role of manybody effects. Physical Review. B, 2008, 77(4): 041404
CrossRef
Google scholar

[6] 
Adamovich I, Baalrud S D, Bogaerts A, Bruggeman P J, Cappelli M, Colombo V, Czarnetzki U, Ebert U, Eden J G, Favia P,
CrossRef
Google scholar

[7] 
Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefﬁcients and rate coefﬁcients for ﬂuid models. Plasma Sources Science & Technology, 2005, 14(4): 722–733
CrossRef
Google scholar

[8] 
Donko Z, Dyatko N. Firstprinciples particle simulation and Boltzmann equation analysis of negative differential conductivity and transient negative mobility effects in xenon. European Physical Journal D, 2016, 70(6): 135
CrossRef
Google scholar

[9] 
Teunissen J, Ebert U. 3D picmcc simulations of discharge inception around a sharp anode in nitrogen/oxygen mixtures. Plasma Sources Science & Technology, 2016, 25(4): 044005
CrossRef
Google scholar

[10] 
Becker M M, Kählert H, Sun A, Bonitz M, Loffhagen D. Advanced ﬂuid modeling and PIC/MCC simulations of lowpressure ccrf discharges. Plasma Sources Science & Technology, 2017, 26(4): 044001
CrossRef
Google scholar

[11] 
Derzsi A, Korolov I, Schüngel E, Donkó Z, Schulze J. Effects of fast atoms and energydependent secondary electron emission yields in PIC/MCC simulations of capacitively coupled plasmas. Plasma Sources Science & Technology, 2015, 24(3): 034002
CrossRef
Google scholar

[12] 
Phelps A V, Petrović Z L. Coldcathode discharges and breakdown in argon: Surface and gas phase production of secondary electrons. Plasma Sources Science & Technology, 1999, 8(3): R21–R44
CrossRef
Google scholar

[13] 
Brault P. Multiscale molecular dynamics simulation of plasma processing: Application to plasma sputtering. Frontiers in Physics, 2018, 6: 59
CrossRef
Google scholar

[14] 
Zhao S, Kang W, Xue J, Zhang X, Zhang P. Comparison of electronic energy loss in graphene and BN sheet by means of timedependent density functional theory. Journal of Physics Condensed Matter, 2015, 27(2): 025401
CrossRef
Google scholar

[15] 
Balzer K, Schlünzen N, Bonitz M. Stopping dynamics of ions passing through correlated honeycomb clusters. Physical Review. B, 2016, 94(24): 245118
CrossRef
Google scholar

[16] 
Graves D B, Brault P. Molecular dynamics for low temperature plasma—surface interaction studies. Journal of Physics. D, Applied Physics, 2009, 42(19): 194011
CrossRef
Google scholar

[17] 
Neyts E C, Brault P. Molecular dynamics simulations for plasmasurface interactions. Plasma Processes and Polymers, 2017, 14(12): 1600145
CrossRef
Google scholar

[18] 
Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D. Kinetic theory of plasma sheaths surrounding electronemitting surfaces. Physical Review Letters, 2013, 111(7): 075002
CrossRef
Google scholar

[19] 
Bronold F X, Fehske H. Absorption of an electron by a dielectric wall. Physical Review Letters, 2015, 115(22): 225001
CrossRef
Google scholar

[20] 
Sun A, Becker M M, Loffhagen D. PIC/MCC simulation of capacitively coupled discharges in helium: Boundary effects. Plasma Sources Science & Technology, 2018, 27(5): 054002
CrossRef
Google scholar

[21] 
Li Y, Go D B. Using ﬁeld emission to control the electron energy distribution in highpressure microdischarges at microscale dimensions. Applied Physics Letters, 2013, 103(23): 234104
CrossRef
Google scholar

[22] 
Helmholtz H. Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierischelektrischen Versuche. Annalen der Physik, 1853, 165(6): 211–233 (in German)
CrossRef
Google scholar

[23] 
Heinisch R L, Bronold F X, Fehske H. Electron surface layer at the interface of a plasma and a dielectric wall. Physical Review. B, 2012, 85(7): 075323
CrossRef
Google scholar

[24] 
Onida G, Reining L, Rubio A. Electronic excitations: Densityfunctional versus manybody green’sfunction approaches. Reviews of Modern Physics, 2002, 74(2): 601–659
CrossRef
Google scholar

[25] 
Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O, Marianetti C A. Electronic structure calculations with dynamical meanﬁeld theory. Reviews of Modern Physics, 2006, 78(3): 865–951
CrossRef
Google scholar

[26] 
Foulkes W M C, Mitas L, Needs R J, Rajagopal G. Quantum monte carlo simulations of solids. Reviews of Modern Physics, 2001, 73(1): 33–83
CrossRef
Google scholar

[27] 
Dornheim T, Groth S, Bonitz M. The uniform electron gas at warm dense matter conditions. Physics Reports, 2018, 744: 1–86
CrossRef
Google scholar

[28] 
Abraham J W. Formation of metalpolymer nanocomposites by plasmabased deposition methods: Kinetic monte carlo and molecular dynamics simulations. Dissertation for the Doctoral Degree. Kiel: ChristianAlbrechtsUniversität zu Kiel, 2018

[29] 
Daniil M, Carlos T, Vasco G. Deterministic and monte carlo methods for simulation of plasmasurface interactions. Plasma Processes and Polymers, 2016, 14(12): 1600175

[30] 
Guerra V, Loureiro J. Dynamical monte carlo simulation of surface atomic recombination. Plasma Sources Science & Technology, 2004, 13(1): 85–94
CrossRef
Google scholar

[31] 
Abraham J W, Kongsuwan N, Strunskus T, Faupel F, Bonitz M. Simulation of nanocolumn formation in a plasma environment. Journal of Applied Physics, 2015, 117(1): 014305
CrossRef
Google scholar

[32] 
Fujioka K. Kinetic Monte Carlo simulations of cluster growth in magnetron plasmas. Dissertation for the Doctoral Degree. Kiel: ChristianAlbrechtsUniversität zu Kiel, 2015

[33] 
Polonskyi O, Ahadi A M, Peter T, Fujioka K, Abraham J W, Vasiliauskaite E, Hinz A, Strunskus T, Wolf S, Bonitz M,et al.Plasma based formation and deposition of metal and metal oxide nanoparticles using a gas aggregation source. European Physical Journal D, 2018, 72(5): 93
CrossRef
Google scholar

[34] 
Rosenthal L. Monte Carlo simulations of metalpolymer nanocomposite formation. Dissertation for the Doctoral Degree. Kiel: ChristianAlbrechtsUniversität zu Kiel, 2013

[35] 
Runge E, Gross E K U. Densityfunctional theory for timedependent systems. Physical Review Letters, 1984, 52(12): 997–1000
CrossRef
Google scholar

[36] 
Balzer K, Bonitz M. Nonequilibrium Green’s Functions Approach to Inhomogeneous Systems. Berlin: Springer, 2013

[37] 
Schlünzen N, Bonitz M. Nonequilibrium Green functions approach to strongly correlated fermions in lattice systems. Contributions to Plasma Physics, 2016, 56(1): 5–91
CrossRef
Google scholar

[38] 
Marini A, Hogan C, Grüning M, Varsano D. Yambo: An ab initio tool for excited state calculations. Computer Physics Communications, 2009, 180(8): 1392–1403
CrossRef
Google scholar

[39] 
Jürg H. Car—parrinello molecular dynamics. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2012, 2(4): 604–612
CrossRef
Google scholar

[40] 
Gross A. Theoretical Surface Science. 2nd ed. Berlin: Springer, 2009

[41] 
Bonitz M, Lopez J, Becker K, Thomsen H, eds. Complex plasmas: Scientiﬁc Challenges and Technological Opportunities . Berlin: Springer, 2014

[42] 
Ott T, Bonitz M. Diffusion in a strongly coupled magnetized plasma. Physical Review Letters, 2011, 107(13): 135003
CrossRef
Google scholar

[43] 
Abraham J W, Strunskus T, Faupel F, Bonitz M. Molecular dynamics simulation of gold cluster growth during sputter deposition. Journal of Applied Physics, 2016, 119(18): 185301
CrossRef
Google scholar

[44] 
Nakano A, Kalia R K, Nomura K, Sharma A, Vashishta P, Shimojo F, van Duin A C T, Goddard W A, Biswas R, Srivastava D,
CrossRef
Google scholar

[45] 
Piana S, LindorffLarsen K, Shaw D E. Atomiclevel description of ubiquitin folding. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(15): 5915–5920
CrossRef
Google scholar

[46] 
Voter A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Physical Review Letters, 1997, 78(20): 3908–3911
CrossRef
Google scholar

[47] 
Laio A, Parrinello M. Escaping freeenergy minima. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(20): 12562–12566
CrossRef
Google scholar

[48] 
Sørensen M R, Voter A F. Temperatureaccelerated dynamics for simulation of infrequent events. Journal of Chemical Physics, 2000, 112(21): 9599–9606
CrossRef
Google scholar

[49] 
Bal K M, Neyts E C. Merging metadynamics into hyperdynamics: Accelerated molecular simulations reaching time scales from microseconds to seconds. Journal of Chemical Theory and Computation, 2015, 11(10): 4545–4554
CrossRef
Google scholar

[50] 
Bonitz M, Filinov A, Abraham J W, Loffhagen D. Extending ﬁrst principle plasmasurface simulations to experimentally relevant scales. Plasma Sources Science & Technology, 2018, 27(6): 064005
CrossRef
Google scholar

[51] 
Abraham J W, Bonitz M. Molecular dynamics simulation of Ag–Cu cluster growth on a thin polymer ﬁlm. Contributions to Plasma Physics, 2018, 58(23): 164–173
CrossRef
Google scholar

[52] 
Franke A, Pehlke E. Diffusion of 1,4butanedithiol on Au(100)(1x1): A DFTbased masterequation approach. Physical Review. B, 2010, 82(20): 205423
CrossRef
Google scholar

[53] 
Filinov A, Bonitz M, Loffhagen D. Microscopic modeling of gassurface scattering. I. A combined molecular dynamicsrate equation approach. Plasma Sources Science & Technology, 2018, 27(6): 064003
CrossRef
Google scholar

[54] 
Schwartzkopf M, Santoro G, Brett C J, Rothkirch A, Polonskyi O, Hinz A, Metwalli E, Yao Y, Strunskus T, Faupel F, et al. Realtime monitoring of morphology and optical properties during sputter deposition for tailoring metalpolymer interfaces. ACS Applied Materials & Interfaces, 2015, 7(24): 13547–13556
CrossRef
Google scholar

[55] 
Abraham J W, Hinz A, Strunskus T, Faupel F, Bonitz M. Formation of polymerbased nanoparticles and nanocomposites by plasmaassisted deposition methods. European Physical Journal D, 2018, 72(5): 92
CrossRef
Google scholar

[56] 
Bonitz M. Quantum Kinetic Theory. 2nd ed. Berlin: Springer, 2016

[57] 
Filinov A, Bonitz M, Loffhagen D. Microscopic modeling of gassurface scattering: II. Application to argon atom adsorption on a platinum (111) surface. Plasma Sources Science & Technology, 2018, 27(6): 064002
CrossRef
Google scholar

[58] 
Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges and Materials Processing. New York: WileyInterscience, 2005

[59] 
Rabalais J W. Low Energy Ionsurface Interaction. New York: Wiley and Sons, 1994

[60] 
Winter H. Collision of atoms and ions with surfaces under grazing incidence. Physics Reports, 2002, 367(5): 387–582
CrossRef
Google scholar

[61] 
Winter H P, Burgdörfer J. Slow Heavyparticle Induced Electron Emission from Solid Surfaces. Berlin: Springer, 2007

[62] 
Daksha M, Berger B, Schuengel E, Korolov I, Derzsi A, Koepke M, Donko Z, Schulze J. A computationally assisted spectroscopic technique to measure secondary electron emission coefﬁcients in radio frequency plasmas. Journal of Physics. D, Applied Physics, 2016, 49(23): 234001
CrossRef
Google scholar

[63] 
Marcak A, Corbella C, de los Arcos T, von Keudell A. Note: Ioninduced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor. Review of Scientific Instruments, 2015, 86(10): 106102
CrossRef
Google scholar

[64] 
More W, Merino J, Monreal R, Pou P, Flores F. Role of energylevel shifts on auger neutralization processes: A calculation beyond the image potential. Physical Review. B, 1998, 58(11): 7385–7390
CrossRef
Google scholar

[65] 
Newns D M, Makoshi K, Brako R, van Wunnik J N M. Charge transfer in inelastic ion and atomsurface collisions. Physica Scripta, 1983, T6: 5–14
CrossRef
Google scholar

[66] 
Yoshimori A, Makoshi K. Timedependent NewnsAnderson model. Progress in Surface Science, 1986, 21(3): 251–294
CrossRef
Google scholar

[67] 
Los J, Geerlings J J C. Charge exchange in atomsurface collisions. Physics Reports, 1990, 190(3): 133–190
CrossRef
Google scholar

[68] 
Pamperin M, Bronold F X, Fehske H. Ioninduced secondary electron emission from metal surfaces. Plasma Sources Science & Technology, 2018, 27(8): 084003
CrossRef
Google scholar

[69] 
Wang N P, García E A, Monreal R, Flores F, Goldberg E C, Brongersma H H, Bauer P. Lowenergy ion neutralization at surfaces: Resonant and auger processes. Physical Review A., 2001, 64(1): 012901
CrossRef
Google scholar

[70] 
Valdés D, Goldberg E C, Blanco J M, Monreal R C. Linear combination of atomic orbitals calculation of the auger neutralization rate of He^{+} on Al(111), (100), and (110) surfaces. Physical Review. B, 2005, 71(24): 245417
CrossRef
Google scholar

[71] 
Marbach J, Bronold F X, Fehske H. Resonant charge transfer at dielectric surfaces. European Physical Journal D, 2012, 66(4): 106
CrossRef
Google scholar

[72] 
Marbach J, Bronold F X, Fehske H. Pseudoparticle approach for chargetransferring moleculesurface collisions. Physical Review. B, 2012, 86(11): 115417
CrossRef
Google scholar

[73] 
IglesiasGarcía A, García E A, Goldberg E C. Role of He excited conﬁgurations in the neutralization of He^{+} ions colliding with a HOPG surface. Physical Review. B, 2013, 87(7): 075434
CrossRef
Google scholar

[74] 
IglesiasGarcía A, García E A, Goldberg E C. Importance of considering helium excited states in He^{+} scattering by aluminum surfaces. Physical Review. B, 2014, 90(19): 195416
CrossRef
Google scholar

[75] 
Pamperin M, Bronold F X, Fehske H. Manybody theory of the neutralization of strontium ions on gold surfaces. Physical Review. B, 2015, 91(3): 035440
CrossRef
Google scholar

[76] 
Pamperin M, Bronold F X, Fehske H. Mixedvalence correlations in chargetransferring atom–surface collisions. Physica Scripta, 2015, T165: 014008
CrossRef
Google scholar

[77] 
Gadzuk J W. Theory of atommetal interactions I. Alkali atom adsorption. Surface Science, 1967, 6(2): 133–158
CrossRef
Google scholar

[78] 
Gadzuk J W. Theory of atommetal interactions II. Oneelectron transition matrix elements. Surface Science, 1967, 6(2): 159–170
CrossRef
Google scholar

[79] 
Propst F M. Energy distribution of electrons ejected from tungsten by He^{+}. Physical Review, 1963, 129(1): 7–11
CrossRef
Google scholar

[80] 
Penn D R, Apell P. Theory of spinpolarized metastableatomdeexcitation spectroscopy: Ni–He. Physical Review. B, 1990, 41(6): 3303–3315
CrossRef
Google scholar

[81] 
Langreth D C, Nordlander P. Derivation of a master equation for chargetransfer processes in atomsurface collisions. Physical Review. B, 1991, 43(4): 2541–2557
CrossRef
Google scholar

[82] 
Shao H, Langreth D C, Nordlander P. Manybody theory for charge transfer in atomsurface collisions. Physical Review. B, 1994, 49(19): 13929–13947
CrossRef
Google scholar

[83] 
Shao H, Langreth D C, Nordlander P. Theoretical description of charge transfer in atomsurface collisions. In Rabalais J W, ed. Low Energy Ionsurface Interaction. New York: Wiley and Sons, 1994, 117

[84] 
Marx D, Hutter J. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods. Cambridge: Cambridge University Press, 2009

[85] 
Hafner J. Abinitio simulations of materials using VASP: Densityfunctional theory and beyond. Journal of Computational Chemistry, 2008, 29(13): 2044–2078
CrossRef
Google scholar

[86] 
Groß A. Ab initio molecular dynamics simulations of the O_{2}/Pt(111) interaction. Catalysis Today, 2016, 260: 60–65
CrossRef
Google scholar

[87] 
Kühne T D. Second generation car–parrinello molecular dynamics. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2014, 4(4): 391–406
CrossRef
Google scholar

[88] 
Baer M. Beyond BornOppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections. NewYork: WileyInterscience, 2006

[89] 
Nosé S. A uniﬁed formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81(1): 511–519
CrossRef
Google scholar

[90] 
Henkelman G, Jónsson H. Improved tangent estimate in the nudged elastic band method for ﬁnding minimum energy paths and saddle points. Journal of Chemical Physics, 2000, 113(22): 9978–9985
CrossRef
Google scholar

[91] 
Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for ﬁnding saddle points and minimum energy paths. Journal of Chemical Physics, 2000, 113(22): 9901–9904
CrossRef
Google scholar

[92] 
Vineyard G H. Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids, 1957, 3(1): 121–127
CrossRef
Google scholar

[93] 
Laio A, Gervasio F L. Metadynamics: A method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science. Reports on Progress in Physics, 2008, 71(12): 126601
CrossRef
Google scholar

[94] 
Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press, 2004

[95] 
Burke K. Perspective on density functional theory. Journal of Chemical Physics, 2012, 136(15): 150901
CrossRef
Google scholar

[96] 
Becke A D. Perspective: Fifty years of densityfunctional theory in chemical physics. The Journal of Chemical Physics, 2014, 140(18): 18A301

[97] 
Yu H S, Li S L, Truhlar D G. Perspective: KohnSham densityfunctional theory descending a staircase. Journal of Chemical Physics, 2016, 145(13): 130901
CrossRef
Google scholar

[98] 
Hohenberg P, Kohn W. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871
CrossRef
Google scholar

[99] 
Kohn W, Sham L J. Selfconsistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133–A1138
CrossRef
Google scholar

[100] 
Klimes J, Michaelides A. Perspective: Advances and challenges in treating van der Waals dispersion forces in density functional theory. Journal of Chemical Physics, 2012, 137(12): 120901
CrossRef
Google scholar

[101] 
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review. B, 1992, 46(11): 6671–6687
CrossRef
Google scholar

[102] 
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865–3868
CrossRef
Google scholar

[103] 
Tao J, Perdew J P, Staroverov V N, Scuseria G E. Climbing the density functional ladder: Nonempirical meta–generalized gradient approximation designed for molecules and solids. Physical Review Letters, 2003, 91(14): 146401
CrossRef
Google scholar

[104] 
Kresse G, Furthmüller J. Efﬁciency of abinitio total energy calculations for metals and semiconductors using a planewave basis set. Computational Materials Science, 1996, 6(1): 15–50
CrossRef
Google scholar

[105] 
Kresse G, Hafner J. Ab initio molecular dynamics for liquid metals. Physical Review. B, 1993, 47(1): 558–561
CrossRef
Google scholar

[106] 
Kresse G, Hafner J. Ab initio moleculardynamics simulation of the liquidmetalamorphoussemiconductor transition in germanium. Physical Review. B, 1994, 49(20): 14251–14269
CrossRef
Google scholar

[107] 
Kresse G, Furthmüller J. Efﬁcient iterative schemes for ab initio totalenergy calculations using a planewave basis set. Physical Review. B, 1996, 54(16): 11169–11186
CrossRef
Google scholar

[108] 
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I,
CrossRef
Google scholar

[109] 
Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M,
CrossRef
Google scholar

[110] 
Mattsson A E, Schultz P A, Desjarlais M P, Mattsson T R, Leung K. Designing meaningful density functional theory calculations in material science—a primer. Modelling and Simulation in Materials Science and Engineering, 2005, 13(1): R1–R31
CrossRef
Google scholar

[111] 
Hamann D R. Generalized normconserving pseudopotentials. Physical Review. B, 1989, 40(5): 2980–2987
CrossRef
Google scholar

[112] 
Trouiller N, Martins J L. Efﬁcient pseudopotentials for planewave calculations. Physical Review. B, 1991, 43(3): 1993–2006
CrossRef
Google scholar

[113] 
Fuchs M, Schefﬂer M. Ab initio pseudopotentials for electronic structure calculations of polyatomic systems using densityfunctional theory. Computer Physics Communications, 1999, 119(1): 67–98
CrossRef
Google scholar

[114] 
Vanderbilt D. Soft selfconsistent pseudopotentials in a generalized eigenvalue formalism. Physical Review. B, 1990, 41(11): 7892–7895
CrossRef
Google scholar

[115] 
Blöchl P E. Projector augmentedwave method. Physical Review. B, 1994, 50(24): 17953–17979
CrossRef
Google scholar

[116] 
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmentedwave method. Physical Review. B, 1999, 59(3): 1758–1775
CrossRef
Google scholar

[117] 
Modinos A. Resonance charge transfer in atomsurface scattering. Progress in Surface Science, 1987, 26(1): 19–46
CrossRef
Google scholar

[118] 
Brako R, Newns D M. Theory of electronic processes in atom scattering from surfaces. Reports on Progress in Physics, 1989, 52(6): 655–697
CrossRef
Google scholar

[119] 
Kimmel G A, Cooper B H. Dynamics of resonant charge transfer in lowenergy alkalimetalion scattering. Physical Review. B, 1993, 48(16): 12164–12177
CrossRef
Google scholar

[120] 
Winter H. Collisions of atoms and ions with surfaces under grazing incidence. Physics Reports, 2002, 367(5): 387–582
CrossRef
Google scholar

[121] 
Race C P, Mason D R, Finnis M W, Foulkes W M C, Horsﬁeld A P, Sutton A P. The treatment of electronic excitations in atomistic models of radiation damage in metals. Reports on Progress in Physics, 2010, 73(11): 116501
CrossRef
Google scholar

[122] 
Wucher A, Duvenbeck A. Kinetic excitation of metallic solids: Progress towards a microscopic model. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2011, 269(14): 1655–1660
CrossRef
Google scholar

[123] 
Lindenblatt M, Pehlke E, Duvenbeck A, Rethfeld B, Wucher A. Kinetic excitation of solids: The concept of electronic friction. Nuclear Instruments & Methods in Physics Research. Section B, Beam Interactions with Materials and Atoms, 2006, 246(2): 333–339
CrossRef
Google scholar

[124] 
Nienhaus H. Electronic excitations by chemical reactions on metal surfaces. Surface Science Reports, 2002, 45(1): 1–78
CrossRef
Google scholar

[125] 
Diesing D, Hasselbrink E. Chemical energy dissipation at surfaces under uhv and high pressure conditions studied using metalinsulatormetal and similar devices. Chemical Society Reviews, 2016, 45(13): 3747–3755
CrossRef
Google scholar

[126] 
Bünermann O, Jiang H, Dorenkamp Y, Kandratsenka A, Janke S M, Auerbach D J, Wodtke A M. Electronhole pair excitation determines the mechanism of hydrogen atom adsorption. Science, 2015, 350(6266): 1346–1349
CrossRef
Google scholar

[127] 
Wodtke A M. Electronically nonadiabatic inﬂuences in surface chemistry and dynamics. Chemical Society Reviews, 2016, 45(13): 3641–3657
CrossRef
Google scholar

[128] 
Rittmeyer S P, Meyer J, Juaristi J I, Reuter K. Electronic frictionbased vibrational lifetimes of molecular adsorbates: Beyond the independentatom approximation. Physical Review Letters, 2015, 115(4): 046102
CrossRef
Google scholar

[129] 
Rittmeyer S P, Bukas V J, Reuter K. Energy dissipation at metal surfaces. Advances in Physics: X, 2018, 3(1): 1381574

[130] 
Alducin M, Muiño R D, Juaristi J I. Nonadiabatic effects in elementary reaction processes at metal surfaces. Progress in Surface Science, 2017, 92(4): 317–340
CrossRef
Google scholar

[131] 
Janke S M, Auerbach D J, Wodtke A M, Kandratsenka A. An accurate fulldimensional potential energy surface for HAu(111): Importance of nonadiabatic electronic excitation in energy transfer and adsorption. Journal of Chemical Physics, 2015, 143(12): 124708
CrossRef
Google scholar

[132] 
Kroes G J, Pavanello M, BlancoRey M, Alducin M, Auerbach D J. Ab initio molecular dynamics calculations on scattering of hyperthermal H atoms from Cu(111) and Au(111). Journal of Chemical Physics, 2014, 141(5): 054705
CrossRef
Google scholar

[133] 
Monturet S, Saalfrank P. Role of electronic friction during the scattering of vibrationally excited nitric oxide molecules from Au(111). Physical Review. B, 2010, 82(7): 075404
CrossRef
Google scholar

[134] 
Mizielinski M S, Bird D M, Persson M, Holloway S. Electronic nonadiabatic effects in the adsorption of hydrogen atoms on metals. Journal of Chemical Physics, 2005, 122(8): 084710
CrossRef
Google scholar

[135] 
Mizielinski M S, Bird D M, Persson M, Holloway S. Spectrum of electronic excitations due to the adsorption of atoms on metal surfaces. Journal of Chemical Physics, 2007, 126(3): 034705
CrossRef
Google scholar

[136] 
Mizielinski M S, Bird D M, Persson M, Holloway S. Newnsanderson model of chemicurrents in H/Cu and H/Ag. Surface Science, 2008, 602(14): 2617–2622
CrossRef
Google scholar

[137] 
Mizielinski M S, Bird D M. Accuracy of perturbation theory for nonadiabatic effects in adsorbatesurface dynamics. Journal of Chemical Physics, 2010, 132(18): 184704
CrossRef
Google scholar

[138] 
Bird D M, Mizielinski M S, Lindenblatt M, Pehlke E. Electronic excitation in atomic adsorption on metals: A comparison of ab initio and model calculations. Surface Science, 2008, 602(6): 1212–1216
CrossRef
Google scholar

[139] 
Lindenblatt M, van Heys J, Pehlke E. Molecular dynamics of nonadiabatic processes at surfaces: Chemisorption of H/Al(111). Surface Science, 2006, 600(18): 3624–3628
CrossRef
Google scholar

[140] 
Lindenblatt M, Pehlke E. Timedependent densityfunctional moleculardynamics study of the isotope effect in chemicurrents. Surface Science, 2006, 600(23): 5068–5073
CrossRef
Google scholar

[141] 
Lindenblatt M, Pehlke E. Ab initio simulation of the spin transition during chemisorption: H/Al(111). Physical Review Letters, 2006, 97(21): 216101
CrossRef
Google scholar

[142] 
Grotemeyer M, Pehlke E. Electronic energy dissipation during scattering of vibrationally excited molecules at metal surfaces: Ab initio simulations for HCl/Al(111). Physical Review Letters, 2014, 112(4): 043201
CrossRef
Google scholar

[143] 
Timmer M, Kratzer P. Electronhole spectra created by adsorption on metals from density functional theory. Physical Review. B, 2009, 79(16): 165407
CrossRef
Google scholar

[144] 
Zhao S, Kang W, Xue J, Zhang X, Zhang P H. + (D^{+},T^{+}) beryllium collisions studied using timedependent density functional theory. Physics Letters, 2015, 379(4): 319–326 (Part A)
CrossRef
Google scholar

[145] 
Moss C L, Isborn C M, Li X. Ehrenfest dynamics with a timedependent densityfunctionaltheory calculation of lifetimes and resonant widths of chargetransfer states of Li^{+} near an aluminum cluster surface. Physical Review A., 2009, 80(2): 024503
CrossRef
Google scholar

[146] 
Castro A, Isla M, Martínez J I, Alonso J A. Scattering of a proton with the Li4 cluster: Nonadiabatic molecular dynamics description based on timedependent densityfunctional theory. Chemical Physics, 2012, 399: 130–134
CrossRef
Google scholar

[147] 
Krasheninnikov A V, Miyamoto Y, Tománek D. Role of electronic excitation in ion collisions with carbon nanostructures. Physical Review Letters, 2007, 99(1): 016104
CrossRef
Google scholar

[148] 
Bubin S, Wang B, Pantelides S, Varga K. Simulation of highenergy ion collisions with graphene fragments. Physical Review. B, 2012, 85(23): 235435
CrossRef
Google scholar

[149] 
Ojanperä A, Krasheninnikov A V, Puska M. Electronic stopping power from ﬁrstprinciples calculations with account for core electron excitations and projectile ionization. Physical Review. B, 2014, 89(3): 035120
CrossRef
Google scholar

[150] 
Wang Z, Li S S, Wang L W. Efﬁcient realtime timedependent density functional theory method and its application to collision of an ion with a 2D material. Physical Review Letters, 2015, 114(6): 063004
CrossRef
Google scholar

[151] 
Yost D C, Yao Y, Kanai Y. Examining realtime timedependent density functional theory nonequilibrium simulations for the calculation of electronic stopping power. Physical Review. B, 2017, 96(11): 115134
CrossRef
Google scholar

[152] 
Schleife A, Kanai Y, Correa A A. Accurate atomistic ﬁrstprinciples calculations of electronic stopping. Physical Review. B, 2015, 91(1): 014306
CrossRef
Google scholar

[153] 
Correa A A, Kohanoff J, Artacho E, SánchezPortal D, Caro A. Nonadiabatic forces in ionsolid interactions: The initial stages of radiation damage. Physical Review Letters, 2012, 108(21): 213201
CrossRef
Google scholar

[154] 
Zeb M A, Kohanoff J, SánchezPortal D, Arnau A, Juaristi J I, Artacho E. Electronic stopping power in gold: The role of d electrons and the H/He anomaly. Physical Review Letters, 2012, 108(22): 225504
CrossRef
Google scholar

[155] 
Ullah R, Corsetti F, SánchezPortal D, Artacho E. Electronic stopping power in narrow band gap semiconductor from ﬁrst principles. Physical Review. B, 2015, 91(12): 125203
CrossRef
Google scholar

[156] 
Timedependent Density Functional Theory. M arques M A L, Ullrich C A, Nogueira F, Rubio A, Burke K, Gross E K U, eds. Berlin: Springer, 2006

[157] 
Fundamentals of TimeDependent Density Functional Theory. Marques M A L, Maitra N T, Nogueira F M S, Gross E K U, Rubio A, eds. Berlin: Springer, 2012

[158] 
Ullrich C A. TimeDependent DensityFunctional Theory. Oxford: Oxford University Press, 2012

[159] 
Ullrich C A, Yang Z H. A brief compendium of timedependent density functional theory. Brazilian Journal of Physics, 2014, 44(1): 154–158
CrossRef
Google scholar

[160] 
Maitra N T. Perspective: Fundamental aspects of timedependent density functional theory. Journal of Chemical Physics, 2016, 144(22): 220901
CrossRef
Google scholar

[161] 
Runge E, Gross E K U. Densityfunctional theory for timedependent systems. Physical Review Letters, 1984, 52(12): 997–1000
CrossRef
Google scholar

[162] 
Gross E K U, Kohn W. Local densityfunctional theory of frequencydependent linear response. Physical Review Letters, 1985, 55(26): 2850–2852
CrossRef
Google scholar

[163] 
Provorse M R, Isborn C M. Electron dynamics with realtime timedependent density functional theory. International Journal of Quantum Chemistry, 2016, 116(10): 739–749
CrossRef
Google scholar

[164] 
Nagano R, Yabana K, Tazawa T, Abe Y. Timedependent meanﬁeld description for multiple charge transfer processes in Ar^{8+}–Ar collisions. Physical Review A., 2000, 62(6): 062721
CrossRef
Google scholar

[165] 
Nazarov V U, Pitarke J M, Takada Y, Vignale G, Chang Y C. Including nonlocality in the exchangecorrelation kernel from timedependent current density functional theory: Application to the stopping power of electron liquids. Physical Review. B, 2007, 76(20): 205103
CrossRef
Google scholar

[166] 
Tully J C. Molecular dynamics with electronic transitions. Journal of Chemical Physics, 1990, 93(2): 1061–1071
CrossRef
Google scholar

[167] 
Shenvi N, Roy S, Tully J C. Nonadiabatic dynamics at metal surfaces: Independentelectron surface hopping. Journal of Chemical Physics, 2009, 130(17): 174107
CrossRef
Google scholar

[168] 
Marques M A L, Castro A, Bertsch G F, Rubio A. Octopus: A ﬁrstprinciples tool for excited electronion dynamics. Computer Physics Communications, 2003, 151(1): 60–78
CrossRef
Google scholar

[169] 
Foglia N O, Morzan U N, Estrin D A, Scherlies D A, Lebrero M C G. Role of core electrons in quantum dynamics using TDDFT. Journal of Chemical Theory and Computation, 2017, 13(1): 77–85
CrossRef
Google scholar

[170] 
Avendaño Franco G. Charge transfer processes in atomic collisions from ﬁrst principles. Dissertation for the Doctoral Degree. LouvainlaNeuve: Université Catholique de Louvain, 2013

[171] 
German K A H, Weare C B, Yarmoff J A. Innershell promotions in lowenergy Li^{+}–Al collisions at clean and alkalicovered Al(100) surfaces. Physical Review. B, 1994, 50(19): 14452–14466
CrossRef
Google scholar

[172] 
Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, Rubio A. Octopus: A tool for the application of timedependent density functional theory. Physica Status Solidi. B, Basic Research, 2006, 243(11): 2465–2488
CrossRef
Google scholar

[173] 
Andrade X, Strubbe D, De Giovannini U, Larsen A H, Oliveira M J T, AlberdiRodriguez J, Varas A, Theophilou I, Helbig N, Verstraete M J,
CrossRef
Google scholar

[174] 
Shukri A A, Bruneval F, Reining L. Ab initio electronic stopping power of protons in bulk materials. Physical Review. B, 2016, 93(3): 035128
CrossRef
Google scholar

[175] 
Markin S N, Primetzhofer D, Spitz M, Bauer P. Electronic stopping of lowenergy H and He in Cu and Au investigated by timeofﬂight lowenergy ion scattering. Physical Review. B, 2009, 80(20): 205105
CrossRef
Google scholar

[176] 
Mason D R, le Page J, Race C P, Foulkes W M C, Finnis M W, Sutton A P. Electronic damping of atomic dynamics in irradiation damage of metals. Journal of Physics Condensed Matter, 2007, 19(43): 436209
CrossRef
Google scholar

[177] 
Grotemeyer M K. Ab initio Berechnungen zur Anregung von ElektronenLochPaaren durch Molekülschwingungen am Beispiel von HCl auf Al(111). Dissertation for the Doctoral Degree. Kiel: ChristianAlbrechtsUniversität zu Kiel, 2016 (in German)

[178] 
D’Agosta R, Di Ventra M. Foundations of stochastic timedependent currentdensity functional theory for open quantum systems: Potential pitfalls and rigorous results. Physical Review. B, 2013, 87(15): 155129
CrossRef
Google scholar

[179] 
Ullrich C A. Timedependent densityfunctional theory beyond the adiabatic approximation: Insights from a twoelectron model system. Journal of Chemical Physics, 2006, 125(23): 234108
CrossRef
Google scholar

[180] 
Kapoor V. Autoionization in timedependent densityfunctional theory. Physical Review. A, 2016, 93(6): 063408
CrossRef
Google scholar

[181] 
Lorente N, Monreal R, Alducin M. Local theory of auger neutralization for slow and compact ions interacting with metal surfaces. Physical Review A., 1994, 49(6): 4716–4725
CrossRef
Google scholar

[182] 
Monreal R C. Auger neutralization and ionization processes for charge exchange between slow noble gas atoms and solid surfaces. Progress in Surface Science, 2014, 89(1): 80–125
CrossRef
Google scholar

[183] 
Balzer K, Rasmussen M, Schlünzen N, Joost J P, Bonitz M. Doublon formation by ions impacting a strongly correlated ﬁnite lattice system. Physical Review Letters, 2018, 121(26): 267602
CrossRef
Google scholar

[184] 
Keldysh L. Diagram technique for nonequilibrium processes. . Soviet Physics, JETP, 1965, 20(4): 1018–1026

[185] 
Kadanoff L, Baym G. Quantum Statistical Mechanics. New York: Benjamin, 1962

[186] 
Bonitz M, Kremp D. Kinetic energy relaxation and correlation time of nonequilibrium manyparticle systems. Physics Letters, 1996, 212(12): 83–90 (Part A)
CrossRef
Google scholar

[187] 
Bonitz M, Kremp D, Scott D C, Binder R, Kraeft W D, Köhler H S. Numerical analysis of nonMarkovian effects in chargecarrier scattering: Onetime versus twotime kinetic equations. Journal of Physics Condensed Matter, 1996, 8(33): 6057–6071
CrossRef
Google scholar

[188] 
Bonitz M. Correlation time approximation in nonmarkovian kinetics. Physics Letters, 1996, 221(12): 85–93 (Part A)
CrossRef
Google scholar

[189] 
Kremp D, Bonitz M, Kraeft W, Schlanges M. NonMarkovian Boltzmann equation. Annals of Physics, 1997, 258(2): 320–359
CrossRef
Google scholar

[190] 
Danielewicz P. Quantum theory of nonequilibrium processes ii. Application to nuclear collisions. Annals of Physics, 1984, 152(2): 305–326
CrossRef
Google scholar

[191] 
Köhler H S. Memory and correlation effects in nuclear collisions. Physical Review. C, 1995, 51(6): 3232–3239
CrossRef
Google scholar

[192] 
Bányai L, Thoai D B T, Reitsamer E, Haug H, Steinbach D, Wehner M U, Wegener M, Marschner T, Stolz W. Exciton–lophonon quantum kinetics: Evidence of memory effects in bulk gaas. Physical Review Letters, 1995, 75(11): 2188–2191
CrossRef
Google scholar

[193] 
Kwong N, Bonitz M, Binder R, Köhler H. Semiconductor KadanoffBaym equations results for optically excited electronhole plasmas semiconductor quantum wells. Physica Status Solidi. B, Basic Research, 1998, 206: 197
CrossRef
Google scholar

[194] 
Binder R, Köhler H S, Bonitz M, Kwong N. Green’s function description of momentumorientation relaxation of photoexcited electron plasmas in semiconductors. Physical Review. B, 1997, 55(8): 5110–5116
CrossRef
Google scholar

[195] 
Bonitz M, Balzer K, van Leeuwen R. Invariance of the Kohn centerofmass mode in a conserving theory. Physical Review. B, 2007, 76(4): 045341
CrossRef
Google scholar

[196] 
Balzer K, Bonitz M, van Leeuwen R, Stan A, Dahlen N E. Nonequilibrium Green’s function approach to strongly correlated fewelectron quantum dots. Physical Review. B, 2009, 79(24): 245306
CrossRef
Google scholar

[197] 
Kremp D, Bornath T, Bonitz M, Schlanges M. Quantum kinetic theory of plasmas in strong laser ﬁelds. Physical Review. E, 1999, 60(4): 4725–4732
CrossRef
Google scholar

[198] 
Bonitz M, Bornath T, Kremp D, Schlanges M, Kraeft W D. Quantum kinetic theory for laser plasmas. Dynamical screening in strong ﬁelds. Contributions to Plasma Physics, 1999, 39(4): 329–347
CrossRef
Google scholar

[199] 
Stefanucci G, van Leeuwen R. Nonequilibrium Manybody Theory of Quantum Systems. Cambridge: Cambridge University Press, 2013

[200] 
Balzer K, Bauch S, Bonitz M. Efﬁcient gridbased method in nonequilibrium Green’s function calculations: Application to model atoms and molecules. Physical Review A., 2010, 81(2): 022510 doi:10.1103/PhysRevA.81.022510

[201] 
Balzer K, Bauch S, Bonitz M. Timedependent secondorder Born calculations for model atoms and molecules in strong laser ﬁelds. Physical Review A., 2010, 82(3): 033427
CrossRef
Google scholar

[202] 
Verdozzi C, Wacker A, Almbladh C O, Bonitz M. Progress in nonequilibrium Green’s functions (PNGF VI). Journal of Physics: Conference Series, 2016, 696(1): 011001

[203] 
Schlünzen N, Hermanns S, Bonitz M, Verdozzi C. Dynamics of strongly correlated fermions: Ab initio results for two and three dimensions. Physical Review. B, 2016, 93(3): 035107
CrossRef
Google scholar

[204] 
Bonitz M, Scharnke M, Schlünzen N. Timereversal invariance of quantum kinetic equations II: Density operator formalism. Contributions to Plasma Physics, 2018, 58(10): 58
CrossRef
Google scholar

[205] 
TRIM and SRIM code packages. Available at the website of srim.org (accessed March 11, 2019)

[206] 
Heese S. Dielectric function of graphene with yambo. Dissertation for the Bachelor Degree. Kiel: ChristianAlbrechtsUniversität zu Kiel, 2017

[207] 
Bonitz M, Balzer K, Schlünzen N, Rodriguez Rasmussen M, Joost J P. Ion Impact Induced Ultrafast Electron Dynamics in Correlated Materials and Finite Graphene Clusters. Physica Status Solidi, 2019, 1800490: (b)

[208] 
Pamperin M, Bronold F X, Fehske H. Manybody theory of the neutralization of strontium ions on gold surfaces. Physical Review. B, 2015, 91(3): 035440
CrossRef
Google scholar

[209] 
Brenig W. Theory of inelastic atomsurface scattering: Average energy loss and energy distribution. Zeitschrift für Physik B, Condensed Matter, 1979, 36(1): 81–87

[210] 
Bonitz M, Rosenthal L, Fujioka K, Zaporojtchenko V, Faupel F, Kersten H. Towards a particle based simulation of complex plasma driven nanocomposite formation. Contributions to Plasma Physics, 2012, 52(10): 890–898
CrossRef
Google scholar

[211] 
Brenig W, Pehlke E. Reaction dynamics of H_{2} on Si. Ab initio supported model calculations. Progress in Surface Science, 2008, 83(5): 263–336
CrossRef
Google scholar

[212] 
Bronold F X, Fehske H. Kinetic modeling of the electronic response of a plasmafacing solid. Journal of Physics. D, Applied Physics, 2017, 50(29): 294003
CrossRef
Google scholar

[213] 
Langmuir I, MottSmith H. Studies of electric discharges in gases at low pressure. General Electric Review, 1924, 27: 449

[214] 
Robertson S. Sheaths in laboratory and space plasmas. Plasma Physics and Controlled Fusion, 2013, 55(9): 093001
CrossRef
Google scholar

[215] 
Brinkmann R P. From electron depletion to quasineutrality: The sheathbulk transition in rf modulated discharges. Journal of Physics. D, Applied Physics, 2009, 42(19): 194009
CrossRef
Google scholar

[216] 
Franklin R N. The plasmasheath boundary region. Journal of Physics. D, Applied Physics, 2003, 36(22): R309–R320
CrossRef
Google scholar

[217] 
Riemann K U. The Bohm criterion and sheath formation. Journal of Physics. D, Applied Physics, 1991, 24(4): 493–518
CrossRef
Google scholar

[218] 
Schwager L A, Birdsall C K. Collector and source sheaths of a ﬁnite ion temperature plasma. Physics of Fluids. B, Plasma Physics, 1990, 2(5): 1057–1068
CrossRef
Google scholar

[219] 
Campanell M D, Umansky M V. Strongly emitting surfaces unable to ﬂoat below plasma potential. Physical Review Letters, 2016, 116(8): 085003
CrossRef
Google scholar

[220] 
Langendorf S, Walker M. Effect of secondary electron emission on the plasma sheath. Physics of Plasmas, 2015, 22(3): 033515
CrossRef
Google scholar

[221] 
Sheehan J P, Hershkowitz N, Kaganovich I D, Wang H, Raitses Y, Barnat E V, Weatherford B R, Sydorenko D. Kinetic theory of plasma sheaths surrounding electronemitting surfaces. Physical Review Letters, 2013, 111(7): 075002
CrossRef
Google scholar

[222] 
Sydorenko D, Kaganovich I D, Raitses Y, Smolyakov A. Breakdown of a space charge limited regime of a sheath in a weakly collisional plasma bounded by walls with secondary electron emission. Physical Review Letters, 2009, 103(14): 145004
CrossRef
Google scholar

[223] 
Taccogna F, Longo S, Capitelli M. Plasmasurface interaction model with secondary electron emission effects. Physics of Plasmas, 2004, 11(3): 1220–1228
CrossRef
Google scholar

[224] 
Hu P N, Ziering S. Collisionless theory of a plasma sheath near an electrode. Physics of Fluids, 1966, 9(11): 2168–2179
CrossRef
Google scholar

[225] 
Franklin R N. Plasma Phenomena in Gas Discharges. Oxford: Clarendon Press, 1976

[226] 
Becker M M, Grubert G K, Loffhagen D. Boundary conditions for the electron kinetic equation using expansion techniques. European Physical Journal Applied Physics, 2010, 51(1): 11001
CrossRef
Google scholar

[227] 
Kushner M J. Modeling of microdischarge devices: Pyramidal structures. Journal of Applied Physics, 2004, 95(3): 846–859
CrossRef
Google scholar

[228] 
Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F. Inﬂuence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. Journal of Physics. D, Applied Physics, 2002, 35(8): 751–761
CrossRef
Google scholar

[229] 
Dussart R, Overzet L J, Lefaucheux P, Dufour T, Kulsreshath M, Mandra M A, Tillocher T, Aubry O, Dozias S, Ranson P,
CrossRef
Google scholar

[230] 
Kulsreshath M K, Schwaederle L, Overzet L J, Lefaucheux P, Ladroue J, Tillocher T, Aubry O, Woytasik M, Schelcher G, Dussart R. Study of dc microdischarge arrays made in silicon using cmos compatible technology. Journal of Physics. D, Applied Physics, 2012, 45(28): 285202
CrossRef
Google scholar

[231] 
Eden J G, Park S J, Cho J H, Kim M H, Houlahan T J, Li B, Kim E S, Kim T L, Lee S K, Kim K S,
CrossRef
Google scholar

[232] 
Tchertchian P A, Wagner C J, Houlahan T J Jr, Li B, Sievers D J, Eden J G. Control of the interface between electronhole and electronion plasmas: Hybrid semiconductorgas phase devices as a gateway for plasma science. Contributions to Plasma Physics, 2011, 51(10): 889–905
CrossRef
Google scholar

[233] 
Ostrom N P, Eden J G. Microcavity plasma photodetectors: Photosensitivity, dynamic range, and the plasmasemiconductor interface. Applied Physics Letters, 2005, 87(14): 141101
CrossRef
Google scholar

[234] 
Sternovsky Z. The effect of ionneutral collisions on the weakly collisional plasmasheath and the reduction of the ion ﬂux to the wall. Plasma Sources Science & Technology, 2005, 14(1): 32–35
CrossRef
Google scholar

[235] 
Riemann K U. Kinetic analysis of the collisional plasmasheath transition. Journal of Physics. D, Applied Physics, 2003, 36(22): 2811–2820
CrossRef
Google scholar

[236] 
Sheridan T E, Goree J. Collisional plasma sheath model. Physics of Fluids. B, Plasma Physics, 1991, 3(10): 2796–2804
CrossRef
Google scholar

[237] 
Tsankov T V, Czarnetzki U. Information hidden in the velocity distribution of ions and the exact kinetic bohm criterion. Plasma Sources Science & Technology, 2017, 26(5): 055003
CrossRef
Google scholar

[238] 
Lacroix D, Hermanns S, Hinz C M, Bonitz M. Ultrafast dynamics of ﬁnite Hubbard clusters: A stochastic meanﬁeld approach. Physical Review. B, 2014, 90(12): 125112
CrossRef
Google scholar

[239] 
Hopjan M, Karlsson D, Ydman S, Verdozzi C, Almbladh C O. Merging features from green’s functions and time dependent density functional theory: A route to the description of correlated materials out of equilibrium? Physical Review Letters, 2016, 116(23): 236402
CrossRef
Google scholar

/
〈  〉 