REVIEW ARTICLE

Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review

  • Aswathy Vasudevan 1,2 ,
  • Vasyl Shvalya 1 ,
  • Aleksander Zidanšek 1,2,3 ,
  • Uroš Cvelbar , 1,2
Expand
  • 1. Jožef Stefan Institute, 1000 Ljubljana, Slovenia
  • 2. Jožef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
  • 3. Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia

Received date: 29 Sep 2018

Accepted date: 06 Dec 2018

Published date: 15 Sep 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Since graphene has been discovered, two-dimensional nanomaterials have attracted attention due to their promising tunable electronic properties. The possibility of tailoring electrical conductivity at the atomic level allows creating new prospective 2D structures for energy harvesting and sensing-related applications. In this respect, one of the most successful way to manipulate the physical properties of the aforementioned materials is related to the surface modification techniques employing plasma. Moreover, plasma-gaseous chemical treatment can provide a controlled change in the bandgap, increase sensitivity and significantly improve the structural stability of material to the environment as well. This review deals with recent advances in the modification of 2D carbon nanostructures for novel ‘edge’ electronics using plasma technology and processes.

Cite this article

Aswathy Vasudevan , Vasyl Shvalya , Aleksander Zidanšek , Uroš Cvelbar . Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(3) : 427 -443 . DOI: 10.1007/s11705-019-1805-4

1
Tiwari J N, Tiwari R N, Kim K S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57(4): 724–803

2
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M, Grigorieva I, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

3
Dutta S, Pati S K. Novel properties of graphene nanoribbons: A review. Journal of Materials Chemistry, 2010, 20(38): 8207–8223

4
Li Y, Jiang X, Liu Z, Liu Z. Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Research, 2010, 3(8): 545–556

5
Pereira V M, Neto A C. Strain engineering of graphene’s electronic structure. Physical Review Letters, 2009, 103(4): 046801

6
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539

7
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 2D Materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30

8
Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805

9
Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J, Jin S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy & Environmental Science, 2014, 7(8): 2608–2613

10
Andriotis A N, Menon M. Tunable magnetic properties of transition metal doped MoS2. Physical Review B, 2014, 90(12): 125304

11
He J, Hummer K, Franchini C. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Physical Review B, 2014, 89(7): 075409

12
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712

13
Cao L, Yang S, Gao W, Liu Z, Gong Y, Ma L, Shi G, Lei S, Zhang Y, Zhang S, Vajtai R, Ajayan P M. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small, 2013, 9(17): 2905–2910

14
Huang Y H, Peng C C, Chen R S, Huang Y S, Ho C H. Transport properties in semiconducting NbS2 nanoflakes. Applied Physics Letters, 2014, 105(9): 093106

15
Moore D B, Beekman M, Disch S, Zschack P, Häusler I, Neumann W, Johnson D C. Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chemistry of Materials, 2013, 25(12): 2404–2409

16
Jeong S, Yoo D, Jang J T, Kim M, Cheon J. Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. Journal of the American Chemical Society, 2012, 134(44): 18233–18236

17
Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730

18
Hsu Y K, Chen Y C, Lin Y G, Chen L C, Chen K H. Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. Journal of Materials Chemistry, 2012, 22(6): 2733–2739

19
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419–425

20
Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 2012, 6(8): 7311–7317

21
Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H. Mechanical exfoliation and characterization of single- and few- layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013, 9(11): 1974–1981

22
Li H, Lu G, Yin Z, He Q, Li H, Zhang Q, Zhang H. Optical identification of single- and few- layer MoS2 sheets. Small, 2012, 8(5): 682–686

23
Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Letters, 2012, 12(11): 5576–5580

24
Wang F, Wang Z, Wang Q, Wang F, Yin L, Xu K, Huang Y, He J. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology, 2015, 26(29): 292001 1–7

25
Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Advanced Materials, 2009, 21(12): 1275–1279

26
Avouris P. Graphene: Electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294

27
Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao X S. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 2013, 6(5): 1388–1414

28
Huang Y, Liang J, Chen Y. An overview of the applications of graphene-based materials in supercapacitors. Small, 2012, 8(12): 1805–1834

29
Lv W, Li Z, Deng Y, Yang Q H, Kang F. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2(1): 107–138

30
Fratini S, Guinea F. Substrate-limited electron dynamics in graphene. Physical Review B, 2008, 77(19): 195415

31
Prezzi D, Eom D, Rim K T, Zhou H, Lefenfeld M, Xiao S, Nuckolls C, Heinz T F, Flynn G W, Hybertsen M S. Edge structures for nanoscale graphene islands on Co (0001) surfaces. ACS Nano, 2014, 8(6): 5765–5773

32
Liu H, Zhang X, Zhai T, Sander T, Chen L, Klar P J. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Nanoscale, 2014, 6(10): 5099–5105

33
Israr-Qadir M, Jamil-Rana S, Nur O, Willander M, Larsson L A, Holtz P O. Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics. Ceramics International, 2014, 40(1): 2435–2439

34
Wang H, Guo Z, Wang S, Liu W. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells. Thin Solid Films, 2014, 558: 1–19

35
Yu X Y, Feng Y, Guan B, Lou X W D, Paik U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science, 2016, 9(4): 1246–1250

36
Peng L, Feng Y, Bai Y, Qiu H J, Wang Y. Designed synthesis of hollow Co3O4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(16): 8825–8831

37
Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I. Morphology and refractive index sensitivity of gold island films. Chemistry of Materials, 2009, 21(24): 5875–5885

38
Hiramatsu M, Shiji K, Amano H, Hori M. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 2004, 84(23): 4708–4710

39
Kargar A, Jing Y, Kim S J, Riley C T, Pan X, Wang D. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano, 2013, 7(12): 11112–11120

40
Terrones H, Lv R, Terrones M, Dresselhaus M S. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012, 75(6): 062501

41
Zhang X, Wang X B, Wang L W, Wang W K, Long L L, Li W W, Yu H Q. Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Applied Materials & Interfaces, 2014, 6(10): 7766–7772

42
Gao R, Yin L, Wang C, Qi Y, Lun N, Zhang L, Liu Y, Kang L, Wang X. High-yield synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission. Journal of Physical Chemistry C, 2009, 113(34): 15160–15165

43
Inamdar A I, Kim J, Jo Y, Woo H, Cho S, Pawar S M, Lee S, Gunjakar J, Cho Y, Hou B, Highly efficient electro-optically tunable smart-supercapacitors using an oxygen-excess nanograin tungsten oxide thin film. Solar Energy Materials and Solar Cells, 2017, 166: 78–85

44
Qu Y, Shao M, Shao Y, Yang M, Xu J, Kwok C T, Shi X, Lu Z, Pan H. Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(29): 15080–15086

45
Tao J, Guan L. Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N, O and F adatoms. Scientific Reports, 2017, 7: 44568

46
Terrones M, Botello-Méndez A R, Campos-Delgado J, López-Urías F, Vega-Cantú Y I, Rodríguez-Macías F J, Elias Arriaga A L, Muñoz-Sandoval E, Cano-Márquez A G, Charlier J C, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5(4): 351–372

47
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876

48
Li L. Epitaxial Graphene on SiC(0001): More Than Just Honeycombs, Physics and Applications of Graphene-Experiments. Sergey M, ed. Rijeka: InTech Europe, 2011, 55–72

49
Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325

50
Zhao J, Pei S, Ren W, Gao L, Cheng H M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 2010, 4(9): 5245–5252

51
Sols F, Guinea F, Neto A C. Coulomb blockade in graphene nanoribbons. Physical Review Letters, 2007, 99(16): 166803

52
Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880

53
Bai J, Huang Y. Fabrication and electrical properties of graphene nanoribbons. Materials Science and Engineering R Reports, 2010, 70(3-6): 341–353

54
Li Z, Qian H, Wu J, Gu B L, Duan W. Role of symmetry in the transport properties of graphene nanoribbons under bias. Physical Review Letters, 2008, 100(20): 206802

55
Boutahir M, El Majdoub S, Rahmani A H, Fakrach B, Chadli H, Rahmani A. Electronic properties of phosphorene nanoribbons. Energy Procedia, 2017, 139: 207–210

56
Ning W, Kong F, Xi C, Graf D, Du H, Han Y, Yang J, Yang K, Tian M, Zhang Y. Evidence of topological two-dimensional metallic surface states in thin bismuth nanoribbons. ACS Nano, 2014, 8(7): 7506–7512

57
Liang G, Neophytou N, Nikonov D E, Lundstrom M S. Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Transactions on Electron Devices, 2007, 54(4): 677–682

58
Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M. Charged-impurity scattering in graphene. Nature Physics, 2008, 4(5): 377–381

59
Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D, Nikonov D E. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Applied Physics Letters, 2006, 88(14): 142102

60
Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 2008, 100(20): 206803

61
Liao L, Bai J, Lin Y C, Qu Y, Huang Y, Duan X. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Advanced Materials, 2010, 22(17): 1941–1945

62
Tapasztó L, Dobrik G, Lambin P, Biró L P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnology, 2008, 3(7): 397–401

63
Özyilmaz B, Jarillo-Herrero P, Efetov D, Kim P. Electronic transport in locally gated graphene nanoconstrictions. Applied Physics Letters, 2007, 91(19): 192107

64
Yazdanpanah A, Pourfath M, Fathipour M, Kosina H, Selberherr S. A numerical study of line-edge roughness scattering in graphene nanoribbons. IEEE Transactions on Electron Devices, 2012, 59(2): 433–440

65
Gunlycke D, Areshkin D A, White C T. Semiconducting graphene nanostrips with edge disorder. Applied Physics Letters, 2007, 90(14): 142104

66
Evaldsson M, Zozoulenko I V, Xu H, Heinzel T. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Physical Review. B, 2008, 78(16): 161407

67
Querlioz D, Apertet Y, Valentin A, Huet K, Bournel A, Galdin-Retailleau S, Dollfus P. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Applied Physics Letters, 2008, 92(4): 042108

68
Gutiérrez C, Brown L, Kim C J, Park J, Pasupathy A N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nature Physics, 2016, 12(11): 1069

69
Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320(5874): 356–358

70
Stampfer C, Güttinger J, Molitor F, Graf D, Ihn T, Ensslin K. Tunable Coulomb blockade in nanostructured graphene. Applied Physics Letters, 2008, 92(1): 012102

71
Bischoff D, Varlet A, Simonet P, Eich M, Overweg H C, Ihn T, Ensslin K. Localized charge carriers in graphene nanodevices. Applied Physics Reviews, 2015, 2(3): 031301

72
Novoselov K S, Geim A K, Morozov S V, Jiang D A, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

73
Novoselov K S, Neto A C. Two-dimensional crystals-based heterostructures: Materials with tailored properties. Physica Scripta, 2012, T146: 014006

74
Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review. B, 1996, 54(24): 17954

75
Wakabayashi K. Electronic transport properties of nanographite ribbon junctions. Physical Review. B, 2001, 64(12): 125428

76
Fujita M, Wakabayashi K, Nakada K, Kusakabe K. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 1996, 65(7): 1920–1923

77
Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229–1232

78
Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191–1196

79
Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758

80
Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Synthesis, structure, and properties of boron- and nitrogen- doped graphene. Advanced Materials, 2009, 21(46): 4726–4730

81
Yu S S, Zheng W T, Wen Q B, Jiang Q. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon, 2008, 46(3): 537–543

82
Li Y, Zhou Z, Shen P, Chen Z. Spin gapless semiconductor‒metal‒half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3(7): 1952–1958

83
Lherbier A, Blase X, Niquet Y M, Triozon F, Roche S. Charge transport in chemically doped 2D graphene. Physical Review Letters, 2008, 101(3): 036808

84
Zheng X H, Rungger I, Zeng Z, Sanvito S. Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons. Physical Review. B, 2009, 80(23): 235426

85
Peköz R, Erkoç Ş. A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons. Physica E, Low-Dimensional Systems and Nanostructures, 2009, 42(2): 110–115

86
Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y. Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010, 20(35): 7491–7496

87
Ma X, Wang Q, Chen L Q, Cermignani W, Schobert H H, Pantano C G. Semi-empirical studies on electronic structures of a boron-doped graphene layer—implications on the oxidation mechanism. Carbon, 1997, 35(10-11): 1517–1525

88
Dutta S, Pati S K. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions. Journal of Physical Chemistry B, 2008, 112(5): 1333–1335

89
Panchakarla L S, Govindaraj A, Rao C N R. Boron-and nitrogen-doped carbon nanotubes and graphene. Inorganica Chimica Acta, 2010, 363(15): 4163–4174

90
Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Atomic layers of hybridized boron nitride and graphene domains. Nature Materials, 2010, 9(5): 430–435

91
Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P. Electronic states at the graphene-hexagonal boron nitride zigzag interface. Nano Letters, 2014, 14(9): 5128–5132

92
Nigar S, Zhou Z, Wang H, Imtiaz M. Modulating the electronic and magnetic properties of graphene. RSC Advances, 2017, 7(81): 51546–51580

93
Rani P, Jindal V K. Designing band gap of graphene by B and N dopant atoms. RSC Advances, 2013, 3(3): 802–812

94
Nath P, Chowdhury S, Sanyal D, Jana D. Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet. Carbon, 2014, 73: 275–282

95
Kawasaki T, Ichimura T, Kishimoto H, Akbar A A, Ogawa T, Oshima C. Double atomic layers of graphene/monolayer h-BN on Ni (111) studied by scanning tunneling microscopy and scanning tunneling spectroscopy. Surface Review and Letters, 2002, 9(3-4): 1459–1464

96
Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, Van Den Brink J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review. B, 2007, 76(7): 073103

97
Shemella P, Nayak S K. Electronic structure and band-gap modulation of graphene via substrate surface chemistry. Applied Physics Letters, 2009, 94(3): 032101

98
Zhou S Y, Gweon G H, Fedorov A V, First P D, De Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A. Substrate-induced bandgap opening in epitaxial graphene. Nature Materials, 2007, 6(10): 770–775

99
Liu A Y, Wentzcovitch R M, Cohen M L. Atomic arrangement and electronic structure of BC2N. Physical Review. B, 1989, 39(3): 1760

100
Miyamoto Y, Rubio A, Cohen M L, Louie S G. Chiral tubules of hexagonal BC2N. Physical Review. B, 1994, 50(7): 4976

101
Liang Y, Kawazoe Y. Half-metallicity modulation of hybrid BN-C nanotubes by external electric fields: A first-principles study. Journal of Chemical Physics, 2014, 140(23): 234702

102
Huang Y, Bando Y, Tang C, Zhi C, Terao T, Dierre B, Sekiguchi T, Golberg D. Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology, 2009, 20(8): 085705

103
Silva F W N, Cruz-Silva E, Terrones M, Terrones H, Barros E B. BNC nanoshells: A novel structure for atomic storage. Nanotechnology, 2017, 28(46): 465201

104
Ding Y, Wang Y, Ni J. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Applied Physics Letters, 2009, 95(12): 123105

105
Kim W Y, Choi Y C, Kim K S. Understanding structures and electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices. Journal of Materials Chemistry, 2008, 18(38): 4510–4521

106
D’Innocenzo V, Srimath Kandada A R, De Bastiani M, Gandini M, Petrozza A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. Journal of the American Chemical Society, 2014, 136(51): 17730–17733

107
Seifert M, Vargas J E, Bobinger M, Sachsenhauser M, Cummings A W, Roche S, Garrido J A. Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization. 2D Materials, 2015, 2(2): 024008

108
Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M, Yu B, Terrones H, Koratkar N. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9(2): 1520–1527

109
Moon J, An J, Sim U, Cho S P, Kang J H, Chung C, Seo J H, Lee J, Nam K T, Hong B H. One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. Advanced Materials, 2014, 26(21): 3501–3505

110
Kato T, Jiao L, Wang X, Wang H, Li X, Zhang L, Hatakeyama R, Dai H. Room-temperature edge functionalization and doping of graphene by mild plasma. Small, 2011, 7(5): 574–577

111
Foley B M, Hernández S C, Duda J C, Robinson J T, Walton S G, Hopkins P E. Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Letters, 2015, 15(8): 4876–4882

112
Singh R S. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study. AIP Advances, 2015, 5(11): 117150

113
Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F, Wang X, Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8(6): 5738–5745

114
Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H. Surface-energy engineering of graphene. Langmuir, 2010, 26(6): 3798–3802

115
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science, 2009, 323(5914): 610–613

116
Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano, 2012, 6(3): 1970–1978

117
Jhon Y I, Kim Y, Park J, Kim J H, Lee T, Seo M, Jhon Y M. Significant exciton brightening in monolayer tungsten disulfides via fluorination: n-Type gas sensing semiconductors. Advanced Functional Materials, 2016, 26(42): 7551–7559

118
Zhang X, Hsu A, Wang H, Song Y, Kong J, Dresselhaus M S, Palacios T. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano, 2013, 7(8): 7262–7270

119
Kim Y, Jhon Y I, Park J, Kim C, Lee S, Jhon Y M. Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2. Scientific Reports, 2016, 6:21405

120
Sajjad M, Morell G, Feng P. Advance in novel boron nitride nanosheets to nanoelectronic device applications. ACS Applied Materials & Interfaces, 2013, 5(11): 5051–5056

121
Nipane A, Karmakar D, Kaushik N, Karande S, Lodha S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano, 2016, 10(2): 2128–2137

122
Azcatl A, Qin X, Prakash A, Zhang C, Cheng L, Wang Q, Lu N, Kim M J, Kim J, Cho K, Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Letters, 2016, 16(9): 5437–5443

123
Stampfer C, Schurtenberger E, Molitor F, Guttinger J, Ihn T, Ensslin K. Tunable graphene single electron transistor. Nano Letters, 2008, 8(8): 2378–2383

124
Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catalysis, 2012, 2(5): 781–794

125
Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Letters, 2011, 11(6): 2472–2477

126
Zhang W, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Li L J. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano, 2011, 5(9): 7517–7524

127
Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21(43): 435203

128
Ionescu R, Espinosa E H, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Van Lier G, Charlier J, Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sensors and Actuators. B, Chemical, 2006, 113(1): 36–46

129
Chiang W H, Lin T C, Li Y S, Yang Y J, Pei Z. Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature. RSC Advances, 2016, 6(3): 2270–2278

130
Han Z J, Murdock A T, Seo D H, Bendavid A. Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Materials, 2018, 5(3): 032002

131
Wojtaszek M, Tombros N, Caretta A, Van Loosdrecht P H M, Van Wees B J. A road to hydrogenating graphene by a reactive ion etching plasma. Journal of Applied Physics, 2011, 110(6): 063715

132
Radisavljevic B, Radenovic A, Brivio J, Giacometti I V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150

133
Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters, 2013, 13(6): 2615–2622

134
Su J, Li N, Zhang Y, Feng L, Liu Z. Role of vacancies in tuning the electronic properties of Au-MoS2 contact. AIP Advances, 2015, 5(7): 077182

135
Liu D, Guo Y, Fang L, Robertson J. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 2013, 103(18): 183113

136
Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications, 2013, 4: 2642

137
Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6: 6293

138
Islam M R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, Khondaker S I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale, 2014, 6(17): 10033–10039

139
Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H T, Craig E, Zheng Y, Brahlek M, Haneef H F, Correlated metals as transparent conductors. Nature Materials, 2016, 15(2): 204–210

140
Castellanos-Gomez A, Wojtaszek M, Tombros N, van Wees B J. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. Small, 2012, 8(10): 1607–1613

141
Zheng X H, Wang X L, Abtew T A, Zeng Z. Building half-metallicity in graphene nanoribbons by direct control over edge states occupation. Journal of Physical Chemistry C, 2010, 114(9): 4190–4193

142
Endo M, Hayashi T, Hong S H, Enoki T, Dresselhaus M S. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. Journal of Applied Physics, 2001, 90(11): 5670–5674

143
Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162

144
Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801

145
Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C, Jarillo-Herrero P. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature, 2014, 505(7484): 528–532

146
Saffarzadeh A, Farghadan R. A spin-filter device based on armchair graphene nanoribbons. Applied Physics Letters, 2011, 98(2): 023106

Outlines

/