Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review

Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar

PDF(2077 KB)
PDF(2077 KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (3) : 427-443. DOI: 10.1007/s11705-019-1805-4
REVIEW ARTICLE
REVIEW ARTICLE

Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review

Author information +
History +

Abstract

Since graphene has been discovered, two-dimensional nanomaterials have attracted attention due to their promising tunable electronic properties. The possibility of tailoring electrical conductivity at the atomic level allows creating new prospective 2D structures for energy harvesting and sensing-related applications. In this respect, one of the most successful way to manipulate the physical properties of the aforementioned materials is related to the surface modification techniques employing plasma. Moreover, plasma-gaseous chemical treatment can provide a controlled change in the bandgap, increase sensitivity and significantly improve the structural stability of material to the environment as well. This review deals with recent advances in the modification of 2D carbon nanostructures for novel ‘edge’ electronics using plasma technology and processes.

Graphical abstract

Keywords

graphene / edge electronics / 2D nanomaterials / plasma / electrical conductivity

Cite this article

Download citation ▾
Aswathy Vasudevan, Vasyl Shvalya, Aleksander Zidanšek, Uroš Cvelbar. Tailoring electrical conductivity of two dimensional nanomaterials using plasma for edge electronics: A mini review. Front. Chem. Sci. Eng., 2019, 13(3): 427‒443 https://doi.org/10.1007/s11705-019-1805-4

References

[1]
Tiwari J N, Tiwari R N, Kim K S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 2012, 57(4): 724–803
[2]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M, Grigorieva I, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200
[3]
Dutta S, Pati S K. Novel properties of graphene nanoribbons: A review. Journal of Materials Chemistry, 2010, 20(38): 8207–8223
[4]
Li Y, Jiang X, Liu Z, Liu Z. Strain effects in graphene and graphene nanoribbons: The underlying mechanism. Nano Research, 2010, 3(8): 545–556
[5]
Pereira V M, Neto A C. Strain engineering of graphene’s electronic structure. Physical Review Letters, 2009, 103(4): 046801
[6]
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539
[7]
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 2D Materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30
[8]
Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: A new direct-gap semiconductor. Physical Review Letters, 2010, 105(13): 136805
[9]
Lukowski M A, Daniel A S, English C R, Meng F, Forticaux A, Hamers R J, Jin S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy & Environmental Science, 2014, 7(8): 2608–2613
[10]
Andriotis A N, Menon M. Tunable magnetic properties of transition metal doped MoS2. Physical Review B, 2014, 90(12): 125304
[11]
He J, Hummer K, Franchini C. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Physical Review B, 2014, 89(7): 075409
[12]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11): 699–712
[13]
Cao L, Yang S, Gao W, Liu Z, Gong Y, Ma L, Shi G, Lei S, Zhang Y, Zhang S, Vajtai R, Ajayan P M. Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small, 2013, 9(17): 2905–2910
[14]
Huang Y H, Peng C C, Chen R S, Huang Y S, Ho C H. Transport properties in semiconducting NbS2 nanoflakes. Applied Physics Letters, 2014, 105(9): 093106
[15]
Moore D B, Beekman M, Disch S, Zschack P, Häusler I, Neumann W, Johnson D C. Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chemistry of Materials, 2013, 25(12): 2404–2409
[16]
Jeong S, Yoo D, Jang J T, Kim M, Cheon J. Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. Journal of the American Chemical Society, 2012, 134(44): 18233–18236
[17]
Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730
[18]
Hsu Y K, Chen Y C, Lin Y G, Chen L C, Chen K H. Birnessite-type manganese oxides nanosheets with hole acceptor assisted photoelectrochemical activity in response to visible light. Journal of Materials Chemistry, 2012, 22(6): 2733–2739
[19]
Geim A K, Grigorieva I V. Van der Waals heterostructures. Nature, 2013, 499(7459): 419–425
[20]
Eda G, Fujita T, Yamaguchi H, Voiry D, Chen M, Chhowalla M. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano, 2012, 6(8): 7311–7317
[21]
Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H. Mechanical exfoliation and characterization of single- and few- layer nanosheets of WSe2, TaS2, and TaSe2. Small, 2013, 9(11): 1974–1981
[22]
Li H, Lu G, Yin Z, He Q, Li H, Zhang Q, Zhang H. Optical identification of single- and few- layer MoS2 sheets. Small, 2012, 8(5): 682–686
[23]
Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J, Grossman J C, Wu J. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Letters, 2012, 12(11): 5576–5580
[24]
Wang F, Wang Z, Wang Q, Wang F, Yin L, Xu K, Huang Y, He J. Synthesis, properties and applications of 2D non-graphene materials. Nanotechnology, 2015, 26(29): 292001 1–7
[25]
Xu Y, Liu Z, Zhang X, Wang Y, Tian J, Huang Y, Ma Y, Zhang X, Chen Y. A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Advanced Materials, 2009, 21(12): 1275–1279
[26]
Avouris P. Graphene: Electronic and photonic properties and devices. Nano Letters, 2010, 10(11): 4285–4294
[27]
Xu C, Xu B, Gu Y, Xiong Z, Sun J, Zhao X S. Graphene-based electrodes for electrochemical energy storage. Energy & Environmental Science, 2013, 6(5): 1388–1414
[28]
Huang Y, Liang J, Chen Y. An overview of the applications of graphene-based materials in supercapacitors. Small, 2012, 8(12): 1805–1834
[29]
Lv W, Li Z, Deng Y, Yang Q H, Kang F. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2(1): 107–138
[30]
Fratini S, Guinea F. Substrate-limited electron dynamics in graphene. Physical Review B, 2008, 77(19): 195415
[31]
Prezzi D, Eom D, Rim K T, Zhou H, Lefenfeld M, Xiao S, Nuckolls C, Heinz T F, Flynn G W, Hybertsen M S. Edge structures for nanoscale graphene islands on Co (0001) surfaces. ACS Nano, 2014, 8(6): 5765–5773
[32]
Liu H, Zhang X, Zhai T, Sander T, Chen L, Klar P J. Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures. Nanoscale, 2014, 6(10): 5099–5105
[33]
Israr-Qadir M, Jamil-Rana S, Nur O, Willander M, Larsson L A, Holtz P O. Fabrication of ZnO nanodisks from structural transformation of ZnO nanorods through natural oxidation and their emission characteristics. Ceramics International, 2014, 40(1): 2435–2439
[34]
Wang H, Guo Z, Wang S, Liu W. One-dimensional titania nanostructures: Synthesis and applications in dye-sensitized solar cells. Thin Solid Films, 2014, 558: 1–19
[35]
Yu X Y, Feng Y, Guan B, Lou X W D, Paik U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction. Energy & Environmental Science, 2016, 9(4): 1246–1250
[36]
Peng L, Feng Y, Bai Y, Qiu H J, Wang Y. Designed synthesis of hollow Co3O4 nanoparticles encapsulated in a thin carbon nanosheet array for high and reversible lithium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(16): 8825–8831
[37]
Karakouz T, Holder D, Goomanovsky M, Vaskevich A, Rubinstein I. Morphology and refractive index sensitivity of gold island films. Chemistry of Materials, 2009, 21(24): 5875–5885
[38]
Hiramatsu M, Shiji K, Amano H, Hori M. Fabrication of vertically aligned carbon nanowalls using capacitively coupled plasma-enhanced chemical vapor deposition assisted by hydrogen radical injection. Applied Physics Letters, 2004, 84(23): 4708–4710
[39]
Kargar A, Jing Y, Kim S J, Riley C T, Pan X, Wang D. ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano, 2013, 7(12): 11112–11120
[40]
Terrones H, Lv R, Terrones M, Dresselhaus M S. The role of defects and doping in 2D graphene sheets and 1D nanoribbons. Reports on Progress in Physics, 2012, 75(6): 062501
[41]
Zhang X, Wang X B, Wang L W, Wang W K, Long L L, Li W W, Yu H Q. Synthesis of a highly efficient BiOCl single-crystal nanodisk photocatalyst with exposing {001} facets. ACS Applied Materials & Interfaces, 2014, 6(10): 7766–7772
[42]
Gao R, Yin L, Wang C, Qi Y, Lun N, Zhang L, Liu Y, Kang L, Wang X. High-yield synthesis of boron nitride nanosheets with strong ultraviolet cathodoluminescence emission. Journal of Physical Chemistry C, 2009, 113(34): 15160–15165
[43]
Inamdar A I, Kim J, Jo Y, Woo H, Cho S, Pawar S M, Lee S, Gunjakar J, Cho Y, Hou B, Highly efficient electro-optically tunable smart-supercapacitors using an oxygen-excess nanograin tungsten oxide thin film. Solar Energy Materials and Solar Cells, 2017, 166: 78–85
[44]
Qu Y, Shao M, Shao Y, Yang M, Xu J, Kwok C T, Shi X, Lu Z, Pan H. Ultra-high electrocatalytic activity of VS2 nanoflowers for efficient hydrogen evolution reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(29): 15080–15086
[45]
Tao J, Guan L. Tailoring the electronic and magnetic properties of monolayer SnO by B, C, N, O and F adatoms. Scientific Reports, 2017, 7: 44568
[46]
Terrones M, Botello-Méndez A R, Campos-Delgado J, López-Urías F, Vega-Cantú Y I, Rodríguez-Macías F J, Elias Arriaga A L, Muñoz-Sandoval E, Cano-Márquez A G, Charlier J C, Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications. Nano Today, 2010, 5(4): 351–372
[47]
Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 2009, 458(7240): 872–876
[48]
Li L. Epitaxial Graphene on SiC(0001): More Than Just Honeycombs, Physics and Applications of Graphene-Experiments. Sergey M, ed. Rijeka: InTech Europe, 2011, 55–72
[49]
Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S, Li L J, Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Advanced Materials, 2012, 24(17): 2320–2325
[50]
Zhao J, Pei S, Ren W, Gao L, Cheng H M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano, 2010, 4(9): 5245–5252
[51]
Sols F, Guinea F, Neto A C. Coulomb blockade in graphene nanoribbons. Physical Review Letters, 2007, 99(16): 166803
[52]
Jiao L, Zhang L, Wang X, Diankov G, Dai H. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880
[53]
Bai J, Huang Y. Fabrication and electrical properties of graphene nanoribbons. Materials Science and Engineering R Reports, 2010, 70(3-6): 341–353
[54]
Li Z, Qian H, Wu J, Gu B L, Duan W. Role of symmetry in the transport properties of graphene nanoribbons under bias. Physical Review Letters, 2008, 100(20): 206802
[55]
Boutahir M, El Majdoub S, Rahmani A H, Fakrach B, Chadli H, Rahmani A. Electronic properties of phosphorene nanoribbons. Energy Procedia, 2017, 139: 207–210
[56]
Ning W, Kong F, Xi C, Graf D, Du H, Han Y, Yang J, Yang K, Tian M, Zhang Y. Evidence of topological two-dimensional metallic surface states in thin bismuth nanoribbons. ACS Nano, 2014, 8(7): 7506–7512
[57]
Liang G, Neophytou N, Nikonov D E, Lundstrom M S. Performance projections for ballistic graphene nanoribbon field-effect transistors. IEEE Transactions on Electron Devices, 2007, 54(4): 677–682
[58]
Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M. Charged-impurity scattering in graphene. Nature Physics, 2008, 4(5): 377–381
[59]
Obradovic B, Kotlyar R, Heinz F, Matagne P, Rakshit T, Giles M D, Nikonov D E. Analysis of graphene nanoribbons as a channel material for field-effect transistors. Applied Physics Letters, 2006, 88(14): 142102
[60]
Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Physical Review Letters, 2008, 100(20): 206803
[61]
Liao L, Bai J, Lin Y C, Qu Y, Huang Y, Duan X. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Advanced Materials, 2010, 22(17): 1941–1945
[62]
Tapasztó L, Dobrik G, Lambin P, Biró L P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nature Nanotechnology, 2008, 3(7): 397–401
[63]
Özyilmaz B, Jarillo-Herrero P, Efetov D, Kim P. Electronic transport in locally gated graphene nanoconstrictions. Applied Physics Letters, 2007, 91(19): 192107
[64]
Yazdanpanah A, Pourfath M, Fathipour M, Kosina H, Selberherr S. A numerical study of line-edge roughness scattering in graphene nanoribbons. IEEE Transactions on Electron Devices, 2012, 59(2): 433–440
[65]
Gunlycke D, Areshkin D A, White C T. Semiconducting graphene nanostrips with edge disorder. Applied Physics Letters, 2007, 90(14): 142104
[66]
Evaldsson M, Zozoulenko I V, Xu H, Heinzel T. Edge-disorder-induced Anderson localization and conduction gap in graphene nanoribbons. Physical Review. B, 2008, 78(16): 161407
[67]
Querlioz D, Apertet Y, Valentin A, Huet K, Bournel A, Galdin-Retailleau S, Dollfus P. Suppression of the orientation effects on bandgap in graphene nanoribbons in the presence of edge disorder. Applied Physics Letters, 2008, 92(4): 042108
[68]
Gutiérrez C, Brown L, Kim C J, Park J, Pasupathy A N. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nature Physics, 2016, 12(11): 1069
[69]
Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320(5874): 356–358
[70]
Stampfer C, Güttinger J, Molitor F, Graf D, Ihn T, Ensslin K. Tunable Coulomb blockade in nanostructured graphene. Applied Physics Letters, 2008, 92(1): 012102
[71]
Bischoff D, Varlet A, Simonet P, Eich M, Overweg H C, Ihn T, Ensslin K. Localized charge carriers in graphene nanodevices. Applied Physics Reviews, 2015, 2(3): 031301
[72]
Novoselov K S, Geim A K, Morozov S V, Jiang D A, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669
[73]
Novoselov K S, Neto A C. Two-dimensional crystals-based heterostructures: Materials with tailored properties. Physica Scripta, 2012, T146: 014006
[74]
Nakada K, Fujita M, Dresselhaus G, Dresselhaus M S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review. B, 1996, 54(24): 17954
[75]
Wakabayashi K. Electronic transport properties of nanographite ribbon junctions. Physical Review. B, 2001, 64(12): 125428
[76]
Fujita M, Wakabayashi K, Nakada K, Kusakabe K. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 1996, 65(7): 1920–1923
[77]
Li X, Wang X, Zhang L, Lee S, Dai H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 2008, 319(5867): 1229–1232
[78]
Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov A N, Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312(5777): 1191–1196
[79]
Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758
[80]
Panchakarla L S, Subrahmanyam K S, Saha S K, Govindaraj A, Krishnamurthy H R, Waghmare U V, Rao C N R. Synthesis, structure, and properties of boron- and nitrogen- doped graphene. Advanced Materials, 2009, 21(46): 4726–4730
[81]
Yu S S, Zheng W T, Wen Q B, Jiang Q. First principle calculations of the electronic properties of nitrogen-doped carbon nanoribbons with zigzag edges. Carbon, 2008, 46(3): 537–543
[82]
Li Y, Zhou Z, Shen P, Chen Z. Spin gapless semiconductor‒metal‒half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3(7): 1952–1958
[83]
Lherbier A, Blase X, Niquet Y M, Triozon F, Roche S. Charge transport in chemically doped 2D graphene. Physical Review Letters, 2008, 101(3): 036808
[84]
Zheng X H, Rungger I, Zeng Z, Sanvito S. Effects induced by single and multiple dopants on the transport properties in zigzag-edged graphene nanoribbons. Physical Review. B, 2009, 80(23): 235426
[85]
Peköz R, Erkoç Ş. A theoretical study of chemical doping and width effect on zigzag graphene nanoribbons. Physica E, Low-Dimensional Systems and Nanostructures, 2009, 42(2): 110–115
[86]
Shao Y, Zhang S, Engelhard M H, Li G, Shao G, Wang Y, Liu J, Aksay I A, Lin Y. Nitrogen-doped graphene and its electrochemical applications. Journal of Materials Chemistry, 2010, 20(35): 7491–7496
[87]
Ma X, Wang Q, Chen L Q, Cermignani W, Schobert H H, Pantano C G. Semi-empirical studies on electronic structures of a boron-doped graphene layer—implications on the oxidation mechanism. Carbon, 1997, 35(10-11): 1517–1525
[88]
Dutta S, Pati S K. Half-metallicity in undoped and boron doped graphene nanoribbons in the presence of semilocal exchange-correlation interactions. Journal of Physical Chemistry B, 2008, 112(5): 1333–1335
[89]
Panchakarla L S, Govindaraj A, Rao C N R. Boron-and nitrogen-doped carbon nanotubes and graphene. Inorganica Chimica Acta, 2010, 363(15): 4163–4174
[90]
Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Atomic layers of hybridized boron nitride and graphene domains. Nature Materials, 2010, 9(5): 430–435
[91]
Drost R, Uppstu A, Schulz F, Hämäläinen S K, Ervasti M, Harju A, Liljeroth P. Electronic states at the graphene-hexagonal boron nitride zigzag interface. Nano Letters, 2014, 14(9): 5128–5132
[92]
Nigar S, Zhou Z, Wang H, Imtiaz M. Modulating the electronic and magnetic properties of graphene. RSC Advances, 2017, 7(81): 51546–51580
[93]
Rani P, Jindal V K. Designing band gap of graphene by B and N dopant atoms. RSC Advances, 2013, 3(3): 802–812
[94]
Nath P, Chowdhury S, Sanyal D, Jana D. Ab-initio calculation of electronic and optical properties of nitrogen and boron doped graphene nanosheet. Carbon, 2014, 73: 275–282
[95]
Kawasaki T, Ichimura T, Kishimoto H, Akbar A A, Ogawa T, Oshima C. Double atomic layers of graphene/monolayer h-BN on Ni (111) studied by scanning tunneling microscopy and scanning tunneling spectroscopy. Surface Review and Letters, 2002, 9(3-4): 1459–1464
[96]
Giovannetti G, Khomyakov P A, Brocks G, Kelly P J, Van Den Brink J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Physical Review. B, 2007, 76(7): 073103
[97]
Shemella P, Nayak S K. Electronic structure and band-gap modulation of graphene via substrate surface chemistry. Applied Physics Letters, 2009, 94(3): 032101
[98]
Zhou S Y, Gweon G H, Fedorov A V, First P D, De Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A. Substrate-induced bandgap opening in epitaxial graphene. Nature Materials, 2007, 6(10): 770–775
[99]
Liu A Y, Wentzcovitch R M, Cohen M L. Atomic arrangement and electronic structure of BC2N. Physical Review. B, 1989, 39(3): 1760
[100]
Miyamoto Y, Rubio A, Cohen M L, Louie S G. Chiral tubules of hexagonal BC2N. Physical Review. B, 1994, 50(7): 4976
[101]
Liang Y, Kawazoe Y. Half-metallicity modulation of hybrid BN-C nanotubes by external electric fields: A first-principles study. Journal of Chemical Physics, 2014, 140(23): 234702
[102]
Huang Y, Bando Y, Tang C, Zhi C, Terao T, Dierre B, Sekiguchi T, Golberg D. Thin-walled boron nitride microtubes exhibiting intense band-edge UV emission at room temperature. Nanotechnology, 2009, 20(8): 085705
[103]
Silva F W N, Cruz-Silva E, Terrones M, Terrones H, Barros E B. BNC nanoshells: A novel structure for atomic storage. Nanotechnology, 2017, 28(46): 465201
[104]
Ding Y, Wang Y, Ni J. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Applied Physics Letters, 2009, 95(12): 123105
[105]
Kim W Y, Choi Y C, Kim K S. Understanding structures and electronic/spintronic properties of single molecules, nanowires, nanotubes, and nanoribbons towards the design of nanodevices. Journal of Materials Chemistry, 2008, 18(38): 4510–4521
[106]
D’Innocenzo V, Srimath Kandada A R, De Bastiani M, Gandini M, Petrozza A. Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. Journal of the American Chemical Society, 2014, 136(51): 17730–17733
[107]
Seifert M, Vargas J E, Bobinger M, Sachsenhauser M, Cummings A W, Roche S, Garrido J A. Role of grain boundaries in tailoring electronic properties of polycrystalline graphene by chemical functionalization. 2D Materials, 2015, 2(2): 024008
[108]
Chow P K, Jacobs-Gedrim R B, Gao J, Lu T M, Yu B, Terrones H, Koratkar N. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano, 2015, 9(2): 1520–1527
[109]
Moon J, An J, Sim U, Cho S P, Kang J H, Chung C, Seo J H, Lee J, Nam K T, Hong B H. One-step synthesis of N-doped graphene quantum sheets from monolayer graphene by nitrogen plasma. Advanced Materials, 2014, 26(21): 3501–3505
[110]
Kato T, Jiao L, Wang X, Wang H, Li X, Zhang L, Hatakeyama R, Dai H. Room-temperature edge functionalization and doping of graphene by mild plasma. Small, 2011, 7(5): 574–577
[111]
Foley B M, Hernández S C, Duda J C, Robinson J T, Walton S G, Hopkins P E. Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Letters, 2015, 15(8): 4876–4882
[112]
Singh R S. Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study. AIP Advances, 2015, 5(11): 117150
[113]
Nan H, Wang Z, Wang W, Liang Z, Lu Y, Chen Q, He D, Tan P, Miao F, Wang X, Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8(6): 5738–5745
[114]
Shin Y J, Wang Y, Huang H, Kalon G, Wee A T S, Shen Z, Bhatia C S, Yang H. Surface-energy engineering of graphene. Langmuir, 2010, 26(6): 3798–3802
[115]
Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science, 2009, 323(5914): 610–613
[116]
Tang Y B, Yin L C, Yang Y, Bo X H, Cao Y L, Wang H E, Zhang W J, Bello I, Lee S T, Cheng H M, Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano, 2012, 6(3): 1970–1978
[117]
Jhon Y I, Kim Y, Park J, Kim J H, Lee T, Seo M, Jhon Y M. Significant exciton brightening in monolayer tungsten disulfides via fluorination: n-Type gas sensing semiconductors. Advanced Functional Materials, 2016, 26(42): 7551–7559
[118]
Zhang X, Hsu A, Wang H, Song Y, Kong J, Dresselhaus M S, Palacios T. Impact of chlorine functionalization on high-mobility chemical vapor deposition grown graphene. ACS Nano, 2013, 7(8): 7262–7270
[119]
Kim Y, Jhon Y I, Park J, Kim C, Lee S, Jhon Y M. Plasma functionalization for cyclic transition between neutral and charged excitons in monolayer MoS2. Scientific Reports, 2016, 6:21405
[120]
Sajjad M, Morell G, Feng P. Advance in novel boron nitride nanosheets to nanoelectronic device applications. ACS Applied Materials & Interfaces, 2013, 5(11): 5051–5056
[121]
Nipane A, Karmakar D, Kaushik N, Karande S, Lodha S. Few-layer MoS2 p-type devices enabled by selective doping using low energy phosphorus implantation. ACS Nano, 2016, 10(2): 2128–2137
[122]
Azcatl A, Qin X, Prakash A, Zhang C, Cheng L, Wang Q, Lu N, Kim M J, Kim J, Cho K, Covalent nitrogen doping and compressive strain in MoS2 by remote N2 plasma exposure. Nano Letters, 2016, 16(9): 5437–5443
[123]
Stampfer C, Schurtenberger E, Molitor F, Guttinger J, Ihn T, Ensslin K. Tunable graphene single electron transistor. Nano Letters, 2008, 8(8): 2378–2383
[124]
Wang H, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catalysis, 2012, 2(5): 781–794
[125]
Jeong H M, Lee J W, Shin W H, Choi Y J, Shin H J, Kang J K, Choi J W. Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Letters, 2011, 11(6): 2472–2477
[126]
Zhang W, Lin C T, Liu K K, Tite T, Su C Y, Chang C H, Li L J. Opening an electrical band gap of bilayer graphene with molecular doping. ACS Nano, 2011, 5(9): 7517–7524
[127]
Nourbakhsh A, Cantoro M, Vosch T, Pourtois G, Clemente F, van der Veen M H, Hofkens J, Heyns M M, De Gendt S, Sels B F. Bandgap opening in oxygen plasma-treated graphene. Nanotechnology, 2010, 21(43): 435203
[128]
Ionescu R, Espinosa E H, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Van Lier G, Charlier J, Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sensors and Actuators. B, Chemical, 2006, 113(1): 36–46
[129]
Chiang W H, Lin T C, Li Y S, Yang Y J, Pei Z. Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature. RSC Advances, 2016, 6(3): 2270–2278
[130]
Han Z J, Murdock A T, Seo D H, Bendavid A. Recent progress in plasma-assisted synthesis and modification of 2D materials. 2D Materials, 2018, 5(3): 032002
[131]
Wojtaszek M, Tombros N, Caretta A, Van Loosdrecht P H M, Van Wees B J. A road to hydrogenating graphene by a reactive ion etching plasma. Journal of Applied Physics, 2011, 110(6): 063715
[132]
Radisavljevic B, Radenovic A, Brivio J, Giacometti I V, Kis A. Single-layer MoS2 transistors. Nature Nanotechnology, 2011, 6(3): 147–150
[133]
Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Letters, 2013, 13(6): 2615–2622
[134]
Su J, Li N, Zhang Y, Feng L, Liu Z. Role of vacancies in tuning the electronic properties of Au-MoS2 contact. AIP Advances, 2015, 5(7): 077182
[135]
Liu D, Guo Y, Fang L, Robertson J. Sulfur vacancies in monolayer MoS2 and its electrical contacts. Applied Physics Letters, 2013, 103(18): 183113
[136]
Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Hopping transport through defect-induced localized states in molybdenum disulphide. Nature Communications, 2013, 4: 2642
[137]
Hong J, Hu Z, Probert M, Li K, Lv D, Yang X, Gu L, Mao N, Feng Q, Xie L, Exploring atomic defects in molybdenum disulphide monolayers. Nature Communications, 2015, 6: 6293
[138]
Islam M R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, Khondaker S I. Tuning the electrical property via defect engineering of single layer MoS2 by oxygen plasma. Nanoscale, 2014, 6(17): 10033–10039
[139]
Zhang L, Zhou Y, Guo L, Zhao W, Barnes A, Zhang H T, Craig E, Zheng Y, Brahlek M, Haneef H F, Correlated metals as transparent conductors. Nature Materials, 2016, 15(2): 204–210
[140]
Castellanos-Gomez A, Wojtaszek M, Tombros N, van Wees B J. Reversible hydrogenation and bandgap opening of graphene and graphite surfaces probed by scanning tunneling spectroscopy. Small, 2012, 8(10): 1607–1613
[141]
Zheng X H, Wang X L, Abtew T A, Zeng Z. Building half-metallicity in graphene nanoribbons by direct control over edge states occupation. Journal of Physical Chemistry C, 2010, 114(9): 4190–4193
[142]
Endo M, Hayashi T, Hong S H, Enoki T, Dresselhaus M S. Scanning tunneling microscope study of boron-doped highly oriented pyrolytic graphite. Journal of Applied Physics, 2001, 90(11): 5670–5674
[143]
Neto A C, Guinea F, Peres N M, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162
[144]
Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801
[145]
Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C, Jarillo-Herrero P. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature, 2014, 505(7484): 528–532
[146]
Saffarzadeh A, Farghadan R. A spin-filter device based on armchair graphene nanoribbons. Applied Physics Letters, 2011, 98(2): 023106

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2077 KB)

Accesses

Citations

Detail

Sections
Recommended

/