RESEARCH ARTICLE

Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes

  • Navid Azizi 1 ,
  • Mojgan Isanejad 1 ,
  • Toraj Mohammadi , 1 ,
  • Reza M. Behbahani 2
Expand
  • 1. Research and Technology Center of Membrane Processes, Chemical Engineering Department, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran
  • 2. Gas Engineering Department, Petroleum University of Technology, Ahwaz, Iran

Received date: 02 May 2018

Accepted date: 16 Sep 2018

Published date: 15 Sep 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Membranes have attracted much attention as economical methods for industrial chemical processes. The effects of the titanium dioxide nanoparticle load on the morphology and CO2/CH4 separation performance of poly (ether-block-amide) (PEBAX-1657) mixed matrix membranes (MMMs) were investigated from pressures of 3–12 bar and temperatures of 30°C–60°C. The PEBAX membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and tensile strength analysis. The incorporation of TiO2 nanoparticles into the polymeric MMMs improved the CO2/CH4 gas separation performance (both the permeability and selectivity) of the membranes. The CO2 permeability and ideal CO2/CH4 selectivity values of the nanocomposite membrane loaded with 8 wt-% TiO2 were 172.32 Barrer and 24.79, respectively whereas those of the neat membrane were 129.87 Barrer and 21.39, respectively.

Cite this article

Navid Azizi , Mojgan Isanejad , Toraj Mohammadi , Reza M. Behbahani . Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(3) : 517 -530 . DOI: 10.1007/s11705-018-1781-0

Acknowledgment

The authors would like to thank the Iran National Science Foundation (INSF) for supporting this research (Grant No. 96008182).
1
Couck S, Denayer J F, Baron G V, Rémy T, Gascon J, Kapteijn F. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. Journal of the American Chemical Society, 2009, 131(18): 6326–6327

DOI

2
Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 2013, 12: 84–107

DOI

3
Azizi N, Mohammadi T, Behbahani R M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51

DOI

4
Gholami M, Mohammadi T, Mosleh S, Hemmati M. CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles. Chemical Papers, 2017, 71(10): 1839–1853

DOI

5
Bondar V, Freeman B, Pinnau I. Gas transport properties of poly (ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B, Polymer Physics, 2000, 38(15): 2051–2062

DOI

6
Mahdavi H R, Azizi N, Mohammadi T. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2O3 membrane for CO2/CH4 separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67

DOI

7
Azizi N, Mahdavi H R, Isanejad M, Mohammadi T. Effects of low and high molecular mass PEG incorporation into different types of poly (ether-b-amide) copolymers on the permeation properties of CO2 and CH4. Journal of Polymer Research, 2017, 24(9): 141

DOI

8
Hatfield G R, Guo Y, Killinger W E, Andrejak R A, Roubicek P M. Characterization of structure and morphology in two poly (ether-block-amide) copolymers. Macromolecules, 1993, 26(24): 6350–6353

DOI

9
Azizi N, Mohammadi T, Behbahani R M. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of Energy Chemistry, 2017, 26(3): 454–465

DOI

10
Di Lorenzo M, Pyda M, Wunderlich B. Calorimetry of nanophase-separated poly (oligoamide-alt-oligoether)s. Journal of Polymer Science. Part B, Polymer Physics, 2001, 39(14): 1594–1604

DOI

11
Konyukhova E, Buzin A, Godovsky Y K. Melting of polyether block amide (Pebax): The effect of stretching. Thermochimica Acta, 2002, 391(1): 271–277

DOI

12
Ren X, Ren J, Li H, Feng S, Deng M. Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. International Journal of Greenhouse Gas Control, 2012, 8: 111–120

DOI

13
Zhao L, Chen Y, Wang B, Sun C, Chakraborty S, Ramasubramanian K, Dutta P K, Ho W W. Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. Journal of Membrane Science, 2016, 498: 1–13

DOI

14
Chen Y, Wang B, Zhao L, Dutta P, Ho W W. New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2015, 495: 415–423

DOI

15
Isanejad M, Mohammadi T. Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Materials Chemistry and Physics, 2018, 205: 303–314

DOI

16
Azizi N, Mohammadi T, Mosayebi Behbahani R. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chemical Engineering Research & Design, 2017, 117: 177–189

DOI

17
Wang Y, Li H, Dong G, Scholes C, Chen V. Effect of fabrication and operation conditions on CO2 separation performance of PEO-PA block copolymer membranes. Industrial & Engineering Chemistry Research, 2015, 54(29): 7273–7283

DOI

18
Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185

DOI

19
Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1): 390–400

DOI

20
Bastani D, Esmaeili N, Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 375–393

DOI

21
Karthikeyan C, Nunes S, Prado L, Ponce M, Silva H, Ruffmann B, Schulte K. Polymer nanocomposite membranes for DMFC application. Journal of Membrane Science, 2005, 254(1): 139–146

DOI

22
Wang L, Li Y, Li S, Ji P, Jiang C. Preparation of composite poly(ether block amide) membrane for CO2 capture. Journal of Energy Chemistry, 2014, 23(6): 717–725

DOI

23
Mahdavi H R, Azizi N, Arzani M, Mohammadi T. Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane. Journal of Natural Gas Science and Engineering, 2017, 46: 275–288

DOI

24
Azizi N, Zarei M M. CO2/CH4 separation using prepared and characterized poly (ether-block-amide)/ZIF-8 mixed matrix membranes. Petroleum Science and Technology, 2017, 35(9): 869–874

DOI

25
Khoshkharam A, Azizi N, Behbahani R M, Ghayyem M A. Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane. Petroleum Science and Technology, 2017, 35(7): 667–673

DOI

26
José Cirilo Ignacio L E, Ant L, Karl S, Emilio B. PEBAX TM-silanized Al2O3 composite: Synthesis and characterization. Open Journal of Polymer Chemistry, 2012, 2012: 63–69

27
Azizi N, Arzani M, Mahdavi H R, Mohammadi T. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470

DOI

28
Jomekian A, Behbahani R M, Mohammadi T, Kargari A. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574

DOI

29
Ghadimi A, Mohammadi T, Kasiri N. A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams. Industrial & Engineering Chemistry Research, 2014, 53(44): 17476–17486

DOI

30
Zhao D, Ren J, Li H, Hua K, Deng M. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. Journal of Energy Chemistry, 2014, 23(2): 227–234

DOI

31
Moghadam F, Omidkhah M R, Vasheghani-Farahani E, Pedram M Z, Dorosti F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011, 77(1): 128–136

DOI

32
Liang C Y, Uchytil P, Petrychkovych R, Lai Y C, Friess K, Sipek M, Reddy M M, Suen S Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Separation and Purification Technology, 2012, 92: 57–63

DOI

33
Khosravanian A, Dehghani M, Pazirofteh M, Asghari M, Mohammadi A H, Shahsavari D. Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites. International Journal of Hydrogen Energy, 2018, 43(5): 2803–2816

DOI

34
Sun H, Ma C, Yuan B, Wang T, Xu Y, Xue Q, Li P, Kong Y. Cardo polyimides/TiO2 mixed matrix membranes: Synthesis, characterization, and gas separation property improvement. Separation and Purification Technology, 2014, 122: 367–375

DOI

35
Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G. Poly (amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization. Journal of Membrane Science, 1997, 135(1): 65–79

DOI

36
Shishatskiy S, Pauls J R, Nunes S P, Peinemann K V. Quaternary ammonium membrane materials for CO2 separation. Journal of Membrane Science, 2010, 359(1-2): 44–53

DOI

37
Isanejad M, Azizi N, Mohammadi T. Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance. Journal of Applied Polymer Science, 2017, 134(9): 44531–44540

DOI

38
Thompson J A, Chapman K W, Koros W J, Jones C W, Nair S. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous and Mesoporous Materials, 2012, 158: 292–299

DOI

39
Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500: 66–75

DOI

40
Fan T, Xie W, Ji X, Liu C, Feng X, Lu X. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521

DOI

41
Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460: 62–70

DOI

42
Ho W, Sirkar K. Membrane Handbook. Heidelberg: Springer Science & Business Media, 2012

43
Adewole J K, Ahmad A L, Ismail S, Leo C P, Sultan A S. Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation. Journal of Applied Polymer Science, 2015, 132(27): 42205–42215

DOI

44
Ismail A F, Khulbe K C, Matsuura T. Gas Separation Membrane Materials and Structures. Gas Separation Membranes. Heidelberg: Springer, 2015, 37–192

45
Surya Murali R, Ismail A F, Rahman M A, Sridhar S. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 2014, 129: 1–8

DOI

46
Hassanajili S, Khademi M, Keshavarz P. Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes. Journal of Membrane Science, 2014, 453: 369–383

DOI

47
Qiu Y, Ren J, Zhao D, Li H, Deng M. Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation. Journal of Energy Chemistry, 2016, 25(1): 122–130

DOI

48
Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B. Preparation of alloyed poly(ether block amide)/poly (ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). Journal of Membrane Science, 2014, 458: 14–26

DOI

49
Kim J H, Lee Y M. Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. Journal of Membrane Science, 2001, 193(2): 209–225

DOI

50
Tu C W, Kuo S W. Using FTIR spectroscopy to study the phase transitions of poly (N-isopropylacrylamide) in tetrahydrofuran-d8/D2O. Journal of Polymer Research, 2014, 21(6): 476

DOI

51
Berg J, Tymoczko J, Stryer L. Secondary structure: Polypeptide chains can fold into regular structures such as the alpha helix, the beta sheet, and turns and loops Biochemistry. New York: WH Freeman, 2002

52
Murthy N S. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(13): 1763–1782

DOI

53
Zheng X, Lin Q, Jiang P, Li Y, Li J. Ionic liquids incorporating polyamide 6: Miscibility and physical properties. Polymers, 2018, 10(5): 562

DOI

54
Schroeder L, Cooper S L. Hydrogen bonding in polyamides. Journal of Applied Physics, 1976, 47(10): 4310–4317

DOI

55
Murali R S, Kumar K P, Ismail A, Sridhar S. Nanosilica and H-Mordenite incorporated poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous and Mesoporous Materials, 2014, 197: 291–298

DOI

56
Dai Y, Ruan X, Yan Z, Yang K, Yu M, Li H, Zhao W, He G. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Separation and Purification Technology, 2016, 166: 171–180

DOI

57
Nordin N A H M, Racha S M, Matsuura T, Misdan N, Sani N A A, Ismail A F, Mustafa A. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120

DOI

58
Nordin N A H M, Ismail A F, Mustafa A, Murali R S, Matsuura T. Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 2015, 5(38): 30206–30215

DOI

59
Dorosti F, Omidkhah M, Abedini R. Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid®5218. Journal of Natural Gas Science and Engineering, 2015, 25: 88–102

DOI

60
Ehsani A, Pakizeh M. Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 414–423

DOI

61
Rahman M M, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan M M, Abetz V. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2013, 437: 286–297

DOI

62
Shekhawat D, Luebke D R, Pennline H W. A review of carbon dioxide selective membranes: A topical report. Pittsburgh, PA: National Energy Technology Laboratory, United States Dwpartment of Energy, 2003

63
Rabiee H, Ghadimi A, Mohammadi T. Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation. Journal of Membrane Science, 2015, 476: 286–302

DOI

64
Rabiee H, Meshkat Alsadat S, Soltanieh M, Mousavi S A, Ghadimi A. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239

DOI

65
Takahashi S, Paul D. Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer, 2006, 47(21): 7519–7534

DOI

66
Matteucci S, Kusuma V A, Sanders D, Swinnea S, Freeman B D. Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne). Journal of Membrane Science, 2008, 307(2): 196–217

DOI

67
Shariati A, Omidkhah M, Pedram M Z. New permeation models for nanocomposite polymeric membranes filled with nonporous particles. Chemical Engineering Research & Design, 2012, 90(4): 563–575

DOI

68
Ismail A F, Kusworo T, Mustafa A, Hasbulla H. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. Regional Conference on Engineering Education RCEE2005, 2005

69
Suloff E C. Sorption behavior of an aliphatic series of aldehydes in the presence of poly(ethylene terephthalate) blends containing aldehyde scavenging agents. Dissertation for the Doctoral Degree. Blacksburg, Virginia: Virginia Tech, 2002, 29–99

70
Sadeghi M, Mehdi T M, Ghalei B, Shafiei M. Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane. Journal of Membrane Science, 2013, 427: 21–29

DOI

71
Gharibi R, Ghadimi A, Yeganeh H, Sadatnia B, Gharedaghi M. Preparation and evaluation of hybrid organic-inorganic poly (urethane-siloxane) membranes with build-in poly(ethylene glycol) segments for efficient separation of CO2/CH4 and CO2/H2. Journal of Membrane Science, 2018, 548: 572–582

DOI

72
Maier G. Gas separation by polymer membranes: Beyond the border. Angewandte Chemie International Edition, 2013, 52(19): 4982–4984

DOI

73
Zhao D, Ren J, Li H, Li X, Deng M. Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes. Journal of Membrane Science, 2014, 467: 41–47

DOI

74
Jazebizadeh M H, Khazraei S. Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon, 2017, 9(5): 775–784

DOI

75
Murali R S, Ismail A F, Rahman M A, Sridhar S. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 2014, 129: 1–8

DOI

76
Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459: 244–255

DOI

77
Feng S, Ren J, Hua K, Li H, Ren X, Deng M. Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation. Separation and Purification Technology, 2013, 116: 25–34

DOI

Outlines

/