Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes

Navid Azizi , Mojgan Isanejad , Toraj Mohammadi , Reza M. Behbahani

Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (3) : 517 -530.

PDF (4062KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (3) : 517 -530. DOI: 10.1007/s11705-018-1781-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes

Author information +
History +
PDF (4062KB)

Abstract

Membranes have attracted much attention as economical methods for industrial chemical processes. The effects of the titanium dioxide nanoparticle load on the morphology and CO2/CH4 separation performance of poly (ether-block-amide) (PEBAX-1657) mixed matrix membranes (MMMs) were investigated from pressures of 3–12 bar and temperatures of 30°C–60°C. The PEBAX membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermal gravimetric analysis, atomic force microscopy and tensile strength analysis. The incorporation of TiO2 nanoparticles into the polymeric MMMs improved the CO2/CH4 gas separation performance (both the permeability and selectivity) of the membranes. The CO2 permeability and ideal CO2/CH4 selectivity values of the nanocomposite membrane loaded with 8 wt-% TiO2 were 172.32 Barrer and 24.79, respectively whereas those of the neat membrane were 129.87 Barrer and 21.39, respectively.

Graphical abstract

Keywords

mixed matrix membrane / TiO2 nanoparticles / PEBAX-1657 / CO2/CH4 separation

Cite this article

Download citation ▾
Navid Azizi, Mojgan Isanejad, Toraj Mohammadi, Reza M. Behbahani. Effect of TiO2 loading on the morphology and CO2/CH4 separation performance of PEBAX-based membranes. Front. Chem. Sci. Eng., 2019, 13(3): 517-530 DOI:10.1007/s11705-018-1781-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Couck S, Denayer J F, Baron G V, Rémy T, Gascon J, Kapteijn F. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. Journal of the American Chemical Society, 2009, 131(18): 6326–6327

[2]

Zhang Y, Sunarso J, Liu S, Wang R. Current status and development of membranes for CO2/CH4 separation: A review. International Journal of Greenhouse Gas Control, 2013, 12: 84–107

[3]

Azizi N, Mohammadi T, Behbahani R M. Synthesis of a new nanocomposite membrane (PEBAX-1074/PEG-400/TiO2) in order to separate CO2 from CH4. Journal of Natural Gas Science and Engineering, 2017, 37: 39–51

[4]

Gholami M, Mohammadi T, Mosleh S, Hemmati M. CO2/CH4 separation using mixed matrix membrane-based polyurethane incorporated with ZIF-8 nanoparticles. Chemical Papers, 2017, 71(10): 1839–1853

[5]

Bondar V, Freeman B, Pinnau I. Gas transport properties of poly (ether-b-amide) segmented block copolymers. Journal of Polymer Science. Part B, Polymer Physics, 2000, 38(15): 2051–2062

[6]

Mahdavi H R, Azizi N, Mohammadi T. Performance evaluation of a synthesized and characterized Pebax1657/PEG1000/γ-Al2O3 membrane for CO2/CH4 separation using response surface methodology. Journal of Polymer Research, 2017, 24(5): 67

[7]

Azizi N, Mahdavi H R, Isanejad M, Mohammadi T. Effects of low and high molecular mass PEG incorporation into different types of poly (ether-b-amide) copolymers on the permeation properties of CO2 and CH4. Journal of Polymer Research, 2017, 24(9): 141

[8]

Hatfield G R, Guo Y, Killinger W E, Andrejak R A, Roubicek P M. Characterization of structure and morphology in two poly (ether-block-amide) copolymers. Macromolecules, 1993, 26(24): 6350–6353

[9]

Azizi N, Mohammadi T, Behbahani R M. Synthesis of a PEBAX-1074/ZnO nanocomposite membrane with improved CO2 separation performance. Journal of Energy Chemistry, 2017, 26(3): 454–465

[10]

Di Lorenzo M, Pyda M, Wunderlich B. Calorimetry of nanophase-separated poly (oligoamide-alt-oligoether)s. Journal of Polymer Science. Part B, Polymer Physics, 2001, 39(14): 1594–1604

[11]

Konyukhova E, Buzin A, Godovsky Y K. Melting of polyether block amide (Pebax): The effect of stretching. Thermochimica Acta, 2002, 391(1): 271–277

[12]

Ren X, Ren J, Li H, Feng S, Deng M. Poly (amide-6-b-ethylene oxide) multilayer composite membrane for carbon dioxide separation. International Journal of Greenhouse Gas Control, 2012, 8: 111–120

[13]

Zhao L, Chen Y, Wang B, Sun C, Chakraborty S, Ramasubramanian K, Dutta P K, Ho W W. Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. Journal of Membrane Science, 2016, 498: 1–13

[14]

Chen Y, Wang B, Zhao L, Dutta P, Ho W W. New Pebax®/zeolite Y composite membranes for CO2 capture from flue gas. Journal of Membrane Science, 2015, 495: 415–423

[15]

Isanejad M, Mohammadi T. Effect of amine modification on morphology and performance of poly (ether-block-amide)/fumed silica nanocomposite membranes for CO2/CH4 separation. Materials Chemistry and Physics, 2018, 205: 303–314

[16]

Azizi N, Mohammadi T, Mosayebi Behbahani R. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chemical Engineering Research & Design, 2017, 117: 177–189

[17]

Wang Y, Li H, Dong G, Scholes C, Chen V. Effect of fabrication and operation conditions on CO2 separation performance of PEO-PA block copolymer membranes. Industrial & Engineering Chemistry Research, 2015, 54(29): 7273–7283

[18]

Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185

[19]

Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1): 390–400

[20]

Bastani D, Esmaeili N, Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 375–393

[21]

Karthikeyan C, Nunes S, Prado L, Ponce M, Silva H, Ruffmann B, Schulte K. Polymer nanocomposite membranes for DMFC application. Journal of Membrane Science, 2005, 254(1): 139–146

[22]

Wang L, Li Y, Li S, Ji P, Jiang C. Preparation of composite poly(ether block amide) membrane for CO2 capture. Journal of Energy Chemistry, 2014, 23(6): 717–725

[23]

Mahdavi H R, Azizi N, Arzani M, Mohammadi T. Improved CO2/CH4 separation using a nanocomposite ionic liquid gel membrane. Journal of Natural Gas Science and Engineering, 2017, 46: 275–288

[24]

Azizi N, Zarei M M. CO2/CH4 separation using prepared and characterized poly (ether-block-amide)/ZIF-8 mixed matrix membranes. Petroleum Science and Technology, 2017, 35(9): 869–874

[25]

Khoshkharam A, Azizi N, Behbahani R M, Ghayyem M A. Separation of CO2 from CH4 using a synthesized Pebax-1657/ZIF-7 mixed matrix membrane. Petroleum Science and Technology, 2017, 35(7): 667–673

[26]

José Cirilo Ignacio L E, Ant L, Karl S, Emilio B. PEBAX TM-silanized Al2O3 composite: Synthesis and characterization. Open Journal of Polymer Chemistry, 2012, 2012: 63–69

[27]

Azizi N, Arzani M, Mahdavi H R, Mohammadi T. Synthesis and characterization of poly(ether-block-amide) copolymers/multi-walled carbon nanotube nanocomposite membranes for CO2/CH4 separation. Korean Journal of Chemical Engineering, 2017, 34(9): 2459–2470

[28]

Jomekian A, Behbahani R M, Mohammadi T, Kargari A. CO2/CH4 separation by high performance co-casted ZIF-8/Pebax 1657/PES mixed matrix membrane. Journal of Natural Gas Science and Engineering, 2016, 31: 562–574

[29]

Ghadimi A, Mohammadi T, Kasiri N. A novel chemical surface modification for the fabrication of PEBA/SiO2 nanocomposite membranes to separate CO2 from syngas and natural gas streams. Industrial & Engineering Chemistry Research, 2014, 53(44): 17476–17486

[30]

Zhao D, Ren J, Li H, Hua K, Deng M. Poly(amide-6-b-ethylene oxide)/SAPO-34 mixed matrix membrane for CO2 separation. Journal of Energy Chemistry, 2014, 23(2): 227–234

[31]

Moghadam F, Omidkhah M R, Vasheghani-Farahani E, Pedram M Z, Dorosti F. The effect of TiO2 nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes. Separation and Purification Technology, 2011, 77(1): 128–136

[32]

Liang C Y, Uchytil P, Petrychkovych R, Lai Y C, Friess K, Sipek M, Reddy M M, Suen S Y. A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Separation and Purification Technology, 2012, 92: 57–63

[33]

Khosravanian A, Dehghani M, Pazirofteh M, Asghari M, Mohammadi A H, Shahsavari D. Grand canonical Monte Carlo and molecular dynamics simulations of the structural properties, diffusion and adsorption of hydrogen molecules through poly(benzimidazoles)/nanoparticle oxides composites. International Journal of Hydrogen Energy, 2018, 43(5): 2803–2816

[34]

Sun H, Ma C, Yuan B, Wang T, Xu Y, Xue Q, Li P, Kong Y. Cardo polyimides/TiO2 mixed matrix membranes: Synthesis, characterization, and gas separation property improvement. Separation and Purification Technology, 2014, 122: 367–375

[35]

Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G. Poly (amide-imide)/TiO2 nano-composite gas separation membranes: Fabrication and characterization. Journal of Membrane Science, 1997, 135(1): 65–79

[36]

Shishatskiy S, Pauls J R, Nunes S P, Peinemann K V. Quaternary ammonium membrane materials for CO2 separation. Journal of Membrane Science, 2010, 359(1-2): 44–53

[37]

Isanejad M, Azizi N, Mohammadi T. Pebax membrane for CO2/CH4 separation: Effects of various solvents on morphology and performance. Journal of Applied Polymer Science, 2017, 134(9): 44531–44540

[38]

Thompson J A, Chapman K W, Koros W J, Jones C W, Nair S. Sonication-induced Ostwald ripening of ZIF-8 nanoparticles and formation of ZIF-8/polymer composite membranes. Microporous and Mesoporous Materials, 2012, 158: 292–299

[39]

Xiang L, Pan Y, Zeng G, Jiang J, Chen J, Wang C. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation. Journal of Membrane Science, 2016, 500: 66–75

[40]

Fan T, Xie W, Ji X, Liu C, Feng X, Lu X. CO2/N2 separation using supported ionic liquid membranes with green and cost-effective [Choline][Pro]/PEG200 mixtures. Chinese Journal of Chemical Engineering, 2016, 24(11): 1513–1521

[41]

Wang S, Liu Y, Huang S, Wu H, Li Y, Tian Z, Jiang Z. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties. Journal of Membrane Science, 2014, 460: 62–70

[42]

Ho W, Sirkar K. Membrane Handbook. Heidelberg: Springer Science & Business Media, 2012

[43]

Adewole J K, Ahmad A L, Ismail S, Leo C P, Sultan A S. Comparative studies on the effects of casting solvent on physico-chemical and gas transport properties of dense polysulfone membrane used for CO2/CH4 separation. Journal of Applied Polymer Science, 2015, 132(27): 42205–42215

[44]

Ismail A F, Khulbe K C, Matsuura T. Gas Separation Membrane Materials and Structures. Gas Separation Membranes. Heidelberg: Springer, 2015, 37–192

[45]

Surya Murali R, Ismail A F, Rahman M A, Sridhar S. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 2014, 129: 1–8

[46]

Hassanajili S, Khademi M, Keshavarz P. Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes. Journal of Membrane Science, 2014, 453: 369–383

[47]

Qiu Y, Ren J, Zhao D, Li H, Deng M. Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation. Journal of Energy Chemistry, 2016, 25(1): 122–130

[48]

Ghadimi A, Amirilargani M, Mohammadi T, Kasiri N, Sadatnia B. Preparation of alloyed poly(ether block amide)/poly (ethylene glycol diacrylate) membranes for separation of CO2/H2 (syngas application). Journal of Membrane Science, 2014, 458: 14–26

[49]

Kim J H, Lee Y M. Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. Journal of Membrane Science, 2001, 193(2): 209–225

[50]

Tu C W, Kuo S W. Using FTIR spectroscopy to study the phase transitions of poly (N-isopropylacrylamide) in tetrahydrofuran-d8/D2O. Journal of Polymer Research, 2014, 21(6): 476

[51]

Berg J, Tymoczko J, Stryer L. Secondary structure: Polypeptide chains can fold into regular structures such as the alpha helix, the beta sheet, and turns and loops Biochemistry. New York: WH Freeman, 2002

[52]

Murthy N S. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(13): 1763–1782

[53]

Zheng X, Lin Q, Jiang P, Li Y, Li J. Ionic liquids incorporating polyamide 6: Miscibility and physical properties. Polymers, 2018, 10(5): 562

[54]

Schroeder L, Cooper S L. Hydrogen bonding in polyamides. Journal of Applied Physics, 1976, 47(10): 4310–4317

[55]

Murali R S, Kumar K P, Ismail A, Sridhar S. Nanosilica and H-Mordenite incorporated poly(ether-block-amide)-1657 membranes for gaseous separations. Microporous and Mesoporous Materials, 2014, 197: 291–298

[56]

Dai Y, Ruan X, Yan Z, Yang K, Yu M, Li H, Zhao W, He G. Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture. Separation and Purification Technology, 2016, 166: 171–180

[57]

Nordin N A H M, Racha S M, Matsuura T, Misdan N, Sani N A A, Ismail A F, Mustafa A. Facile modification of ZIF-8 mixed matrix membrane for CO2/CH4 separation: Synthesis and preparation. RSC Advances, 2015, 5(54): 43110–43120

[58]

Nordin N A H M, Ismail A F, Mustafa A, Murali R S, Matsuura T. Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Advances, 2015, 5(38): 30206–30215

[59]

Dorosti F, Omidkhah M, Abedini R. Enhanced CO2/CH4 separation properties of asymmetric mixed matrix membrane by incorporating nano-porous ZSM-5 and MIL-53 particles into Matrimid®5218. Journal of Natural Gas Science and Engineering, 2015, 25: 88–102

[60]

Ehsani A, Pakizeh M. Synthesis, characterization and gas permeation study of ZIF-11/Pebax® 2533 mixed matrix membranes. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66: 414–423

[61]

Rahman M M, Filiz V, Shishatskiy S, Abetz C, Neumann S, Bolmer S, Khan M M, Abetz V. PEBAX® with PEG functionalized POSS as nanocomposite membranes for CO2 separation. Journal of Membrane Science, 2013, 437: 286–297

[62]

Shekhawat D, Luebke D R, Pennline H W. A review of carbon dioxide selective membranes: A topical report. Pittsburgh, PA: National Energy Technology Laboratory, United States Dwpartment of Energy, 2003

[63]

Rabiee H, Ghadimi A, Mohammadi T. Gas transport properties of reverse-selective poly(ether-b-amide6)/[Emim][BF4] gel membranes for CO2/light gases separation. Journal of Membrane Science, 2015, 476: 286–302

[64]

Rabiee H, Meshkat Alsadat S, Soltanieh M, Mousavi S A, Ghadimi A. Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation. Journal of Industrial and Engineering Chemistry, 2015, 27: 223–239

[65]

Takahashi S, Paul D. Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix. Polymer, 2006, 47(21): 7519–7534

[66]

Matteucci S, Kusuma V A, Sanders D, Swinnea S, Freeman B D. Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne). Journal of Membrane Science, 2008, 307(2): 196–217

[67]

Shariati A, Omidkhah M, Pedram M Z. New permeation models for nanocomposite polymeric membranes filled with nonporous particles. Chemical Engineering Research & Design, 2012, 90(4): 563–575

[68]

Ismail A F, Kusworo T, Mustafa A, Hasbulla H. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. Regional Conference on Engineering Education RCEE2005, 2005

[69]

Suloff E C. Sorption behavior of an aliphatic series of aldehydes in the presence of poly(ethylene terephthalate) blends containing aldehyde scavenging agents. Dissertation for the Doctoral Degree. Blacksburg, Virginia: Virginia Tech, 2002, 29–99

[70]

Sadeghi M, Mehdi T M, Ghalei B, Shafiei M. Preparation, characterization and gas permeation properties of a polycaprolactone based polyurethane-silica nanocomposite membrane. Journal of Membrane Science, 2013, 427: 21–29

[71]

Gharibi R, Ghadimi A, Yeganeh H, Sadatnia B, Gharedaghi M. Preparation and evaluation of hybrid organic-inorganic poly (urethane-siloxane) membranes with build-in poly(ethylene glycol) segments for efficient separation of CO2/CH4 and CO2/H2. Journal of Membrane Science, 2018, 548: 572–582

[72]

Maier G. Gas separation by polymer membranes: Beyond the border. Angewandte Chemie International Edition, 2013, 52(19): 4982–4984

[73]

Zhao D, Ren J, Li H, Li X, Deng M. Gas separation properties of poly(amide-6-b-ethylene oxide)/amino modified multi-walled carbon nanotubes mixed matrix membranes. Journal of Membrane Science, 2014, 467: 41–47

[74]

Jazebizadeh M H, Khazraei S. Investigation of methane and carbon dioxide gases permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon, 2017, 9(5): 775–784

[75]

Murali R S, Ismail A F, Rahman M A, Sridhar S. Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 2014, 129: 1–8

[76]

Nafisi V, Hägg M B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. Journal of Membrane Science, 2014, 459: 244–255

[77]

Feng S, Ren J, Hua K, Li H, Ren X, Deng M. Poly(amide-12-b-ethylene oxide)/polyethylene glycol blend membranes for carbon dioxide separation. Separation and Purification Technology, 2013, 116: 25–34

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (4062KB)

2735

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/