Frontiers of Chemical Science and Engineering >
Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling
Received date: 15 Jul 2018
Accepted date: 14 Oct 2018
Published date: 15 Jun 2019
Copyright
Plasma is gaining increasing interest for cancer treatment, but the underlying mechanisms are not yet fully understood. Using computer simulations at the molecular level, we try to gain better insight in how plasma-generated reactive oxygen and nitrogen species (RONS) can penetrate through the cell membrane. Specifically, we compare the permeability of various (hydrophilic and hydrophobic) RONS across both oxidized and non-oxidized cell membranes. We also study pore formation, and how it is hampered by higher concentrations of cholesterol in the cell membrane, and we illustrate the much higher permeability of H2O2 through aquaporin channels. Both mechanisms may explain the selective cytotoxic effect of plasma towards cancer cells. Finally, we also discuss the synergistic effect of plasma-induced oxidation and electric fields towards pore formation.
Annemie Bogaerts , Maksudbek Yusupov , Jamoliddin Razzokov , Jonas Van der Paal . Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 253 -263 . DOI: 10.1007/s11705-018-1786-8
1 |
Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer, 2011, 105(9): 1295–1301
|
2 |
Graves D B. Reactive species from cold atmospheric plasma: Implications for cancer therapy. Plasma Processes and Polymers, 2014, 11(12): 1120–1127
|
3 |
Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 2016, 630: 1–84
|
4 |
Hole P S, Zabkiewicz J, Munje C, Newton Z, Pearn L, White P, Marquez N, Hills R K, Burnett A K, Tonks A, Darley R L. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood, 2013, 122(19): 3322–3330
|
5 |
Papadopoulos M C, Saadoun S. Key roles of aquaporins in tumor biology. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2015, 1848(10): 2576–2583
|
6 |
Cordeiro R M. Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins. Biochimica et Biophysica Acta (BBA) - General Subjects, 2015, 1850(9): 1786–1794
|
7 |
Yan D, Talbot A, Nourmohammadi N, Sherman J H, Cheng X, Keidar M. Toward understanding the selective anticancer capacity of cold atmospheric plasma—a model based on aquaporins. Biointerphases, 2015, 10(4): 040801
|
8 |
Wong-Ekkabut J, Xu Z, Triampo W, Tang I M, Tieleman D P, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study. Biophysical Journal, 2007, 93(12): 4225–4236
|
9 |
Beranova L, Cwiklik L, Jurkiewicz P, Hof M, Jungwirth P. Oxidation changes physical properties of phospholipid bilayers: Fluorescence spectroscopy and molecular simulations. Langmuir, 2010, 26(9): 6140–6144
|
10 |
Cwiklik L, Jungwirth P. Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chemical Physics Letters, 2010, 486(4-6): 99–103
|
11 |
Van der Paal J, Neyts E C, Verlackt C C W, Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science (Cambridge), 2016, 7(1): 489–498
|
12 |
Van der Paal J, Verheyen C, Neyts E C, Bogaerts A. Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: Possible explanation for plasma cancer selectivity. Scientific Reports, 2017, 7(1): 39526
|
13 |
Svarnas P, Matrali S H, Gazeli K, Antimisiaris S G. Assessment of atmospheric-pressure guided streamer (plasma bullet) influence on liposomes with different composition and physicochemical properties. Plasma Processes and Polymers, 2015, 12(7): 655–665
|
14 |
Hirst A M, Frame F M, Arya M, Maitland N J, O’Connell D. Low temperature plasmas as emerging cancer therapeutics: The state of play and thoughts for the future. Tumour Biology, 2016, 37(6): 7021–7031
|
15 |
Robert E, Darny T, Dozias S, Iseni S, Pouvesle J M. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays. Physics of Plasmas, 2015, 22(12): 122007
|
16 |
Begum A, Laroussi M, Pervez M R. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon. AIP Advances, 2013, 3(6): 062117
|
17 |
Weaver J C, Smith K C, Esser A T, Son R S, Gowrishankar T. A brief overview of electroporation pulse strength-duration space: A region where additional intracellular effects are expected. Bioelectrochemistry (Amsterdam, Netherlands), 2012, 87: 236–243
|
18 |
Vernier P T, Ziegler M J. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. Journal of Physical Chemistry B, 2007, 111(45): 12993–12996
|
19 |
Casciola M, Tarek M. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016, 1858(10): 2278–2289
|
20 |
Marrink S J, de Vries A H, Tieleman D P. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009, 1788(1): 149–168
|
21 |
Tai W Y, Yang Y C, Lin H J, Huang C P, Cheng Y L, Chan M F, Yen H L, Liau I. Interplay between structure and fluidity of model lipid membranes under oxidative attack. Journal of Physical Chemistry B, 2010, 114(47): 15642–15649
|
22 |
Grzelinska E, Bartosz G, Gwozdzinski K, Leyko W. A spin-label study of the effect of gamma radiation on erythrocyte membrane. Influence of lipid peroxidation on membrane structure. International Journal of Radiation Biology, 1979, 36: 325–334
|
23 |
Wratten M L, Van Ginkel G, Van’t Veld A A, Bekker A, Van Faassen E E, Sevanian A. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Biochemistry, 1992, 31(44): 10901–10907
|
24 |
Chen J J, Yu B P. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radical Biology & Medicine, 1994, 17(5): 411–418
|
25 |
Richter C. Biophysical consequences of lipid peroxidation in membranes. Chemistry and Physics of Lipids, 1987, 44(2-4): 175–189
|
26 |
Mason R P, Walter M F, Mason P E. Effect of oxidative stress on membrane structure: Small-angle X-ray diffraction analysis. Free Radical Biology & Medicine, 1997, 23(3): 419–425
|
27 |
Szili E J, Hong S H, Short R D. On the effect of serum on the transport of reactive oxygen species across phospholipid membranes. Biointerphases, 2015, 10(2): 029511
|
28 |
Lee E H, Hsin J, Sotomayor M, Comellas G, Schulten K. Discovery through the computational microscope. Structure (London, England), 2009, 17(10): 1295–1306
|
29 |
Cordeiro R M. Reactive oxygen species at phospholipid bilayers: Distribution, mobility and permeation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2014, 1838(1): 438–444
|
30 |
Miotto R, Costa E B, Trellese E B, Neto A J P, Baptista M S, Ferraz A C, Cordeiro R M. Biomembranes under oxidative stress, Insights from molecular dynamics simulations. In: Tran Q N, Arabnia H R, eds. Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: Systems and Applications. Amsterdam: Elsevier, 2016, 197–211
|
31 |
Yusupov M, Van der Paal J, Neyts E C, Bogaerts A. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochimica et Biophysica Acta (BBA) - General, 2017, 1861: 839–847
|
32 |
Yusupov M, Wende K, Kupsch S, Neyts E C, Reuter S, Bogaerts A. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Scientific Reports, 2017, 7(1): 5761
|
33 |
Yusupov M, Yan D, Cordeiro R M, Bogaerts A. Atomic scale simulation of H2O2 permeation through aquaporin: Toward the understanding of plasma-cancer treatment. Journal of Physics. D, Applied Physics, 2018, 51(12): 125401
|
34 |
Razzokov J, Yusupov M, Cordeiro R M, Bogaerts A. Atomic scale understanding of the permeation of plasma species across native and oxidized membranes. Journal of Physics. D, Applied Physics, 2018, 51(36): 365203
|
35 |
Bogaerts A, Khosravian N, Van der Paal J, Verlackt C C W, Yusupov M, Kamaraj B, Neyts E C. Multi-level molecular modeling for plasma medicine. Journal of Physics. D, Applied Physics, 2016, 49(5): 054002
|
36 |
Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review. B, 1998, 58(11): 7260–7268
|
37 |
Khosravian N, Kamaraj B, Neyts E C, Bogaerts A. Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations. Scientific Reports, 2016, 6(1): 19466
|
38 |
Verlackt C C W, Van Boxem W, Dewaele D, Lemière F, Sobott F, Benedikt J, Neyts E C, Bogaerts A. Mechanisms of peptide oxidation by hydroxyl radicals: Insight at the molecular scale. Journal of Physical Chemistry C, 2017, 121(10): 5787–5799
|
39 |
Verlackt C C W, Neyts E C, Bogaerts A. Atomic scale behavior of oxygen-based radicals in water. Journal of Physics. D, Applied Physics, 2017, 50(11): 11LT01
|
40 |
Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review. B, 1990, 42(15): 9458–9471
|
41 |
van Duin A C T, Dasgupta S, Lorant F, Goddard W A, Reax F F. A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409
|
42 |
Yusupov M, Neyts E C, Khalilov U, Snoeckx R, van Duin A C T, Bogaerts A. Atomic scale simulations of plasma species interacting with bacterial cell walls. New Journal of Physics, 2012, 14(9): 093043
|
43 |
Yusupov M, Bogaerts A, Huygh S, Snoeckx S, van Duin A C T, Neyts E C. Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. Journal of Physical Chemistry C, 2013, 117(11): 5993–5998
|
44 |
Yusupov M, Neyts E C, Verlackt C C, Khalilov U, van Duin A C T, Bogaerts A. Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species: A reactive molecular dynamics study. Plasma Processes and Polymers, 2015, 12(2): 162–171
|
45 |
Babaeva N Y, Ning N, Graves D B, Kushner M J. Ion activation energy delivered to wounds by atmospheric pressure dielectric-barrier discharges: Sputtering of lipid-like surfaces. Journal of Physics. D, Applied Physics, 2012, 45(11): 115203
|
46 |
Van der Paal J, Aernouts S, van Duin A C T, Neyts E C, Bogaerts A. Interaction of O and OH radicals with a simple model system for lipids in the skin barrier: A reactive molecular dynamics simulation for plasma medicine. Journal of Physics. D, Applied Physics, 2013, 46(39): 395201
|
47 |
Van der Paal J, Verlackt C C, Yusupov M, Neyts E C, Bogaerts A. Structural modification of the skin barrier by OH radicals: A reactive molecular dynamics study for plasma medicine. Journal of Physics. D, Applied Physics, 2015, 48(15): 155202
|
48 |
Abolfath R M, Biswas P K, Rajnarayanam R, Brabec T, Kodym R, Papiez L. Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution. Journal of Physical Chemistry A, 2012, 116(15): 3940–3945
|
49 |
Verlackt C C M, Neyts E C, Jacob T, Fantauzzi D, Golkaram M, Shin Y K, van Duin A C T, Bogaerts A. Atomic-scale insight in the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field. New Journal of Physics, 2015, 17(10): 103005
|
50 |
Yusupov M, Neyts E C, Simon P, Bergiyorov G, Snoeckx R, van Duin A C T, Bogaerts A. Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine. Journal of Physics. D, Applied Physics, 2014, 47(2): 025205
|
51 |
Khosravian N, Bogaerts A, Huygh S, Yusupov M, Neyts E C. How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations. Biointerphases, 2015, 10(2): 029501
|
52 |
Berger O, Edholm O, Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophysical Journal, 1997, 72(5): 2002–2013
|
53 |
Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M Jr, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995, 117(19): 5179–5197
|
54 |
Yu W, He X, Vanommeslaeghe K, MacKerell A D Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 2012, 33(31): 2451–2468
|
55 |
van Gunsteren W F, Berendsen H J C. Groningen Molecular Simulation (GROMOS) Library Manual. Groningen, The Netherlands: Biomos, 1987, 1–221
|
56 |
Marrink S J, Risselada H J, Yefimov S, Tieleman D P, De Vries A H. The MARTINI force field: Coarse grained model for biomolecular simulations. Journal of Physical Chemistry B, 2007, 111(27): 7812–7824
|
57 |
Åqvist J, Warshel A. Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chemical Reviews, 1993, 93(7): 2523–2544
|
58 |
Neyts E C, Yusupov M, Verlackt C C, Bogaerts A. Computer simulations of plasma-biomolecule and plasma-tissue interactions for a better insight in plasma medicine. Journal of Physics. D, Applied Physics, 2014, 47(29): 293001
|
59 |
Möller M N, Li Q, Lancaster J R Jr, Denicola A. Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life, 2007, 59(4): 243–248
|
60 |
Subczynski W K, Lomnicka M, Hyde J S. Permeability of nitric oxide through lipid bilayer membranes. Free Radical Research, 1996, 24(5): 343–349
|
61 |
Shinitzky M. Membrane fluidity in malignancy adversative and recuperative. Biochimica et Biophysica Acta (BBA) - Revue Canadienne, 1984, 738: 251–261
|
62 |
Reis A, Domingues M R M, Amado F M L, Ferrer-Correia A J V, Domingues P. Separation of peroxidation products of diacyl-phosphatidylcholines by reversed-phase liquid chromatography-mass spectrometry. Biomedical Chromatography, 2005, 19(2): 129–137
|
63 |
Haluska C K, Baptista M S, Fernades A U, Schroder A P, Marques C M, Itri R. Photo-activated phase separation in giant vesicles made from different lipid mixture. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012, 1818: 666–672
|
64 |
Lackmann J W, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow J E. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. Journal of the Royal Society, Interface, 2013, 10(89): 20130591
|
65 |
Chung T Y, Ning N, Chu J W, Graves D B, Bartis E, Seog J, Oehrlein G S. Plasma deactivation of endotoxic biomolecules: Vacuum ultraviolet photon and radical beam effects on Lipid A. Plasma Processes and Polymers, 2013, 10(2): 167–180
|
66 |
Bartis E A J, Graves D B, Seog J, Oehrlein G S. Atmospheric pressure plasma treatment of lipopolysaccharide in a controlled environment. Journal of Physics. D, Applied Physics, 2013, 46(31): 312002 doi:10.1088/0022-3727/46/31/312002
|
67 |
Bartis E A J, Barrett C, Chung T Y, Ning N, Chu J W, Graves D B, Seog J, Oehrlein G S. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma. Journal of Physics. D, Applied Physics, 2014, 47(4): 045202
|
68 |
Park J H, Kumar N, Park D H, Yusupov M, Neyts E C, Verlackt C C W, Bogaerts A, Kang M H, Uhm H S, Choi E H,
|
69 |
Marschewski M, Hirschberg J, Omairi T, Hofft O, Viol W, Emmert S, Maus-Friedrichs W. Electron spectroscopic analysis of the human lipid skin barrier: Cold atmospheric plasma-induced changes in lipid composition. Experimental Dermatology, 2012, 21(12): 921–925
|
70 |
Takai E, Kitamura T, Kuwabara J, Ikawa S, Yoshizawa S, Shiraki K, Kawasaki H, Arakawa R, Kitano K. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. Journal of Physics. D, Applied Physics, 2014, 47(28): 285403
|
71 |
Madugundu G S, Cadet J, Wagner J R. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Research, 2014, 42(11): 7450–7460
|
72 |
Hong S H, Szili E J, Jenkins A T A, Short R D. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. Journal of Physics. D, Applied Physics, 2014, 47(36): 362001
|
73 |
Szili E J, Bradley J W, Short R D. A ‘tissue model’ to study the plasma delivery of reactive oxygen species. Journal of Physics. D, Applied Physics, 2014, 47(15): 152002
|
74 |
Hammer M U, Forbrig E, Kupsch S, Weltmann K D, Reuter S. Influence of plasma treatment on the structure and function of lipids. Plasma Medicine, 2013, 3(1-2): 97–114
|
/
〈 | 〉 |