Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling

Annemie Bogaerts, Maksudbek Yusupov, Jamoliddin Razzokov, Jonas Van der Paal

PDF(4071 KB)
PDF(4071 KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (2) : 253-263. DOI: 10.1007/s11705-018-1786-8
REVIEW ARTICLE
REVIEW ARTICLE

Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling

Author information +
History +

Abstract

Plasma is gaining increasing interest for cancer treatment, but the underlying mechanisms are not yet fully understood. Using computer simulations at the molecular level, we try to gain better insight in how plasma-generated reactive oxygen and nitrogen species (RONS) can penetrate through the cell membrane. Specifically, we compare the permeability of various (hydrophilic and hydrophobic) RONS across both oxidized and non-oxidized cell membranes. We also study pore formation, and how it is hampered by higher concentrations of cholesterol in the cell membrane, and we illustrate the much higher permeability of H2O2 through aquaporin channels. Both mechanisms may explain the selective cytotoxic effect of plasma towards cancer cells. Finally, we also discuss the synergistic effect of plasma-induced oxidation and electric fields towards pore formation.

Graphical abstract

Keywords

plasma medicine / cancer treatment / computer modelling / cell membrane / reactive oxygen and nitrogen species

Cite this article

Download citation ▾
Annemie Bogaerts, Maksudbek Yusupov, Jamoliddin Razzokov, Jonas Van der Paal. Plasma for cancer treatment: How can RONS penetrate through the cell membrane? Answers from computer modeling. Front. Chem. Sci. Eng., 2019, 13(2): 253‒263 https://doi.org/10.1007/s11705-018-1786-8

References

[1]
Keidar M, Walk R, Shashurin A, Srinivasan P, Sandler A, Dasgupta S, Ravi R, Guerrero-Preston R, Trink B. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. British Journal of Cancer, 2011, 105(9): 1295–1301
CrossRef Google scholar
[2]
Graves D B. Reactive species from cold atmospheric plasma: Implications for cancer therapy. Plasma Processes and Polymers, 2014, 11(12): 1120–1127
CrossRef Google scholar
[3]
Lu X, Naidis G V, Laroussi M, Reuter S, Graves D B, Ostrikov K. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Physics Reports, 2016, 630: 1–84
CrossRef Google scholar
[4]
Hole P S, Zabkiewicz J, Munje C, Newton Z, Pearn L, White P, Marquez N, Hills R K, Burnett A K, Tonks A, Darley R L. Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood, 2013, 122(19): 3322–3330
CrossRef Google scholar
[5]
Papadopoulos M C, Saadoun S. Key roles of aquaporins in tumor biology. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2015, 1848(10): 2576–2583
CrossRef Google scholar
[6]
Cordeiro R M. Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins. Biochimica et Biophysica Acta (BBA) - General Subjects, 2015, 1850(9): 1786–1794
CrossRef Google scholar
[7]
Yan D, Talbot A, Nourmohammadi N, Sherman J H, Cheng X, Keidar M. Toward understanding the selective anticancer capacity of cold atmospheric plasma—a model based on aquaporins. Biointerphases, 2015, 10(4): 040801
CrossRef Google scholar
[8]
Wong-Ekkabut J, Xu Z, Triampo W, Tang I M, Tieleman D P, Monticelli L. Effect of lipid peroxidation on the properties of lipid bilayers: A molecular dynamics study. Biophysical Journal, 2007, 93(12): 4225–4236
CrossRef Google scholar
[9]
Beranova L, Cwiklik L, Jurkiewicz P, Hof M, Jungwirth P. Oxidation changes physical properties of phospholipid bilayers: Fluorescence spectroscopy and molecular simulations. Langmuir, 2010, 26(9): 6140–6144
CrossRef Google scholar
[10]
Cwiklik L, Jungwirth P. Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chemical Physics Letters, 2010, 486(4-6): 99–103
CrossRef Google scholar
[11]
Van der Paal J, Neyts E C, Verlackt C C W, Bogaerts A. Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chemical Science (Cambridge), 2016, 7(1): 489–498
CrossRef Google scholar
[12]
Van der Paal J, Verheyen C, Neyts E C, Bogaerts A. Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: Possible explanation for plasma cancer selectivity. Scientific Reports, 2017, 7(1): 39526
CrossRef Google scholar
[13]
Svarnas P, Matrali S H, Gazeli K, Antimisiaris S G. Assessment of atmospheric-pressure guided streamer (plasma bullet) influence on liposomes with different composition and physicochemical properties. Plasma Processes and Polymers, 2015, 12(7): 655–665
CrossRef Google scholar
[14]
Hirst A M, Frame F M, Arya M, Maitland N J, O’Connell D. Low temperature plasmas as emerging cancer therapeutics: The state of play and thoughts for the future. Tumour Biology, 2016, 37(6): 7021–7031
CrossRef Google scholar
[15]
Robert E, Darny T, Dozias S, Iseni S, Pouvesle J M. New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays. Physics of Plasmas, 2015, 22(12): 122007
CrossRef Google scholar
[16]
Begum A, Laroussi M, Pervez M R. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon. AIP Advances, 2013, 3(6): 062117
CrossRef Google scholar
[17]
Weaver J C, Smith K C, Esser A T, Son R S, Gowrishankar T. A brief overview of electroporation pulse strength-duration space: A region where additional intracellular effects are expected. Bioelectrochemistry (Amsterdam, Netherlands), 2012, 87: 236–243
CrossRef Google scholar
[18]
Vernier P T, Ziegler M J. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. Journal of Physical Chemistry B, 2007, 111(45): 12993–12996
CrossRef Google scholar
[19]
Casciola M, Tarek M. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2016, 1858(10): 2278–2289
CrossRef Google scholar
[20]
Marrink S J, de Vries A H, Tieleman D P. Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2009, 1788(1): 149–168
CrossRef Google scholar
[21]
Tai W Y, Yang Y C, Lin H J, Huang C P, Cheng Y L, Chan M F, Yen H L, Liau I. Interplay between structure and fluidity of model lipid membranes under oxidative attack. Journal of Physical Chemistry B, 2010, 114(47): 15642–15649
CrossRef Google scholar
[22]
Grzelinska E, Bartosz G, Gwozdzinski K, Leyko W. A spin-label study of the effect of gamma radiation on erythrocyte membrane. Influence of lipid peroxidation on membrane structure. International Journal of Radiation Biology, 1979, 36: 325–334
[23]
Wratten M L, Van Ginkel G, Van’t Veld A A, Bekker A, Van Faassen E E, Sevanian A. Structural and dynamic effects of oxidatively modified phospholipids in unsaturated lipid membranes. Biochemistry, 1992, 31(44): 10901–10907
CrossRef Google scholar
[24]
Chen J J, Yu B P. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radical Biology & Medicine, 1994, 17(5): 411–418
CrossRef Google scholar
[25]
Richter C. Biophysical consequences of lipid peroxidation in membranes. Chemistry and Physics of Lipids, 1987, 44(2-4): 175–189
CrossRef Google scholar
[26]
Mason R P, Walter M F, Mason P E. Effect of oxidative stress on membrane structure: Small-angle X-ray diffraction analysis. Free Radical Biology & Medicine, 1997, 23(3): 419–425
CrossRef Google scholar
[27]
Szili E J, Hong S H, Short R D. On the effect of serum on the transport of reactive oxygen species across phospholipid membranes. Biointerphases, 2015, 10(2): 029511
CrossRef Google scholar
[28]
Lee E H, Hsin J, Sotomayor M, Comellas G, Schulten K. Discovery through the computational microscope. Structure (London, England), 2009, 17(10): 1295–1306
CrossRef Google scholar
[29]
Cordeiro R M. Reactive oxygen species at phospholipid bilayers: Distribution, mobility and permeation. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2014, 1838(1): 438–444
CrossRef Google scholar
[30]
Miotto R, Costa E B, Trellese E B, Neto A J P, Baptista M S, Ferraz A C, Cordeiro R M. Biomembranes under oxidative stress, Insights from molecular dynamics simulations. In: Tran Q N, Arabnia H R, eds. Emerging Trends in Applications and Infrastructures for Computational Biology, Bioinformatics, and Systems Biology: Systems and Applications. Amsterdam: Elsevier, 2016, 197–211
[31]
Yusupov M, Van der Paal J, Neyts E C, Bogaerts A. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochimica et Biophysica Acta (BBA) - General, 2017, 1861: 839–847
[32]
Yusupov M, Wende K, Kupsch S, Neyts E C, Reuter S, Bogaerts A. Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Scientific Reports, 2017, 7(1): 5761
CrossRef Google scholar
[33]
Yusupov M, Yan D, Cordeiro R M, Bogaerts A. Atomic scale simulation of H2O2 permeation through aquaporin: Toward the understanding of plasma-cancer treatment. Journal of Physics. D, Applied Physics, 2018, 51(12): 125401
CrossRef Google scholar
[34]
Razzokov J, Yusupov M, Cordeiro R M, Bogaerts A. Atomic scale understanding of the permeation of plasma species across native and oxidized membranes. Journal of Physics. D, Applied Physics, 2018, 51(36): 365203
CrossRef Google scholar
[35]
Bogaerts A, Khosravian N, Van der Paal J, Verlackt C C W, Yusupov M, Kamaraj B, Neyts E C. Multi-level molecular modeling for plasma medicine. Journal of Physics. D, Applied Physics, 2016, 49(5): 054002
CrossRef Google scholar
[36]
Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Physical Review. B, 1998, 58(11): 7260–7268
CrossRef Google scholar
[37]
Khosravian N, Kamaraj B, Neyts E C, Bogaerts A. Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations. Scientific Reports, 2016, 6(1): 19466
CrossRef Google scholar
[38]
Verlackt C C W, Van Boxem W, Dewaele D, Lemière F, Sobott F, Benedikt J, Neyts E C, Bogaerts A. Mechanisms of peptide oxidation by hydroxyl radicals: Insight at the molecular scale. Journal of Physical Chemistry C, 2017, 121(10): 5787–5799
CrossRef Google scholar
[39]
Verlackt C C W, Neyts E C, Bogaerts A. Atomic scale behavior of oxygen-based radicals in water. Journal of Physics. D, Applied Physics, 2017, 50(11): 11LT01
CrossRef Google scholar
[40]
Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Physical Review. B, 1990, 42(15): 9458–9471
CrossRef Google scholar
[41]
van Duin A C T, Dasgupta S, Lorant F, Goddard W A, Reax F F. A reactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409
CrossRef Google scholar
[42]
Yusupov M, Neyts E C, Khalilov U, Snoeckx R, van Duin A C T, Bogaerts A. Atomic scale simulations of plasma species interacting with bacterial cell walls. New Journal of Physics, 2012, 14(9): 093043
CrossRef Google scholar
[43]
Yusupov M, Bogaerts A, Huygh S, Snoeckx S, van Duin A C T, Neyts E C. Plasma-induced destruction of bacterial cell wall components: A reactive molecular dynamics simulation. Journal of Physical Chemistry C, 2013, 117(11): 5993–5998
CrossRef Google scholar
[44]
Yusupov M, Neyts E C, Verlackt C C, Khalilov U, van Duin A C T, Bogaerts A. Inactivation of the endotoxic biomolecule lipid A by oxygen plasma species: A reactive molecular dynamics study. Plasma Processes and Polymers, 2015, 12(2): 162–171
CrossRef Google scholar
[45]
Babaeva N Y, Ning N, Graves D B, Kushner M J. Ion activation energy delivered to wounds by atmospheric pressure dielectric-barrier discharges: Sputtering of lipid-like surfaces. Journal of Physics. D, Applied Physics, 2012, 45(11): 115203
CrossRef Google scholar
[46]
Van der Paal J, Aernouts S, van Duin A C T, Neyts E C, Bogaerts A. Interaction of O and OH radicals with a simple model system for lipids in the skin barrier: A reactive molecular dynamics simulation for plasma medicine. Journal of Physics. D, Applied Physics, 2013, 46(39): 395201
CrossRef Google scholar
[47]
Van der Paal J, Verlackt C C, Yusupov M, Neyts E C, Bogaerts A. Structural modification of the skin barrier by OH radicals: A reactive molecular dynamics study for plasma medicine. Journal of Physics. D, Applied Physics, 2015, 48(15): 155202
CrossRef Google scholar
[48]
Abolfath R M, Biswas P K, Rajnarayanam R, Brabec T, Kodym R, Papiez L. Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution. Journal of Physical Chemistry A, 2012, 116(15): 3940–3945
CrossRef Google scholar
[49]
Verlackt C C M, Neyts E C, Jacob T, Fantauzzi D, Golkaram M, Shin Y K, van Duin A C T, Bogaerts A. Atomic-scale insight in the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field. New Journal of Physics, 2015, 17(10): 103005
CrossRef Google scholar
[50]
Yusupov M, Neyts E C, Simon P, Bergiyorov G, Snoeckx R, van Duin A C T, Bogaerts A. Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine. Journal of Physics. D, Applied Physics, 2014, 47(2): 025205
CrossRef Google scholar
[51]
Khosravian N, Bogaerts A, Huygh S, Yusupov M, Neyts E C. How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations. Biointerphases, 2015, 10(2): 029501
CrossRef Google scholar
[52]
Berger O, Edholm O, Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophysical Journal, 1997, 72(5): 2002–2013
CrossRef Google scholar
[53]
Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M Jr, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995, 117(19): 5179–5197
CrossRef Google scholar
[54]
Yu W, He X, Vanommeslaeghe K, MacKerell A D Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 2012, 33(31): 2451–2468
CrossRef Google scholar
[55]
van Gunsteren W F, Berendsen H J C. Groningen Molecular Simulation (GROMOS) Library Manual. Groningen, The Netherlands: Biomos, 1987, 1–221
[56]
Marrink S J, Risselada H J, Yefimov S, Tieleman D P, De Vries A H. The MARTINI force field: Coarse grained model for biomolecular simulations. Journal of Physical Chemistry B, 2007, 111(27): 7812–7824
CrossRef Google scholar
[57]
Åqvist J, Warshel A. Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chemical Reviews, 1993, 93(7): 2523–2544
CrossRef Google scholar
[58]
Neyts E C, Yusupov M, Verlackt C C, Bogaerts A. Computer simulations of plasma-biomolecule and plasma-tissue interactions for a better insight in plasma medicine. Journal of Physics. D, Applied Physics, 2014, 47(29): 293001
CrossRef Google scholar
[59]
Möller M N, Li Q, Lancaster J R Jr, Denicola A. Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life, 2007, 59(4): 243–248
CrossRef Google scholar
[60]
Subczynski W K, Lomnicka M, Hyde J S. Permeability of nitric oxide through lipid bilayer membranes. Free Radical Research, 1996, 24(5): 343–349
CrossRef Google scholar
[61]
Shinitzky M. Membrane fluidity in malignancy adversative and recuperative. Biochimica et Biophysica Acta (BBA) - Revue Canadienne, 1984, 738: 251–261
[62]
Reis A, Domingues M R M, Amado F M L, Ferrer-Correia A J V, Domingues P. Separation of peroxidation products of diacyl-phosphatidylcholines by reversed-phase liquid chromatography-mass spectrometry. Biomedical Chromatography, 2005, 19(2): 129–137
CrossRef Google scholar
[63]
Haluska C K, Baptista M S, Fernades A U, Schroder A P, Marques C M, Itri R. Photo-activated phase separation in giant vesicles made from different lipid mixture. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2012, 1818: 666–672
CrossRef Google scholar
[64]
Lackmann J W, Schneider S, Edengeiser E, Jarzina F, Brinckmann S, Steinborn E, Havenith M, Benedikt J, Bandow J E. Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. Journal of the Royal Society, Interface, 2013, 10(89): 20130591
CrossRef Google scholar
[65]
Chung T Y, Ning N, Chu J W, Graves D B, Bartis E, Seog J, Oehrlein G S. Plasma deactivation of endotoxic biomolecules: Vacuum ultraviolet photon and radical beam effects on Lipid A. Plasma Processes and Polymers, 2013, 10(2): 167–180
CrossRef Google scholar
[66]
Bartis E A J, Graves D B, Seog J, Oehrlein G S. Atmospheric pressure plasma treatment of lipopolysaccharide in a controlled environment. Journal of Physics. D, Applied Physics, 2013, 46(31): 312002 doi:10.1088/0022-3727/46/31/312002
[67]
Bartis E A J, Barrett C, Chung T Y, Ning N, Chu J W, Graves D B, Seog J, Oehrlein G S. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma. Journal of Physics. D, Applied Physics, 2014, 47(4): 045202
CrossRef Google scholar
[68]
Park J H, Kumar N, Park D H, Yusupov M, Neyts E C, Verlackt C C W, Bogaerts A, Kang M H, Uhm H S, Choi E H, A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Scientific Reports, 2015, 5(1): 13849
CrossRef Google scholar
[69]
Marschewski M, Hirschberg J, Omairi T, Hofft O, Viol W, Emmert S, Maus-Friedrichs W. Electron spectroscopic analysis of the human lipid skin barrier: Cold atmospheric plasma-induced changes in lipid composition. Experimental Dermatology, 2012, 21(12): 921–925
CrossRef Google scholar
[70]
Takai E, Kitamura T, Kuwabara J, Ikawa S, Yoshizawa S, Shiraki K, Kawasaki H, Arakawa R, Kitano K. Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. Journal of Physics. D, Applied Physics, 2014, 47(28): 285403
CrossRef Google scholar
[71]
Madugundu G S, Cadet J, Wagner J R. Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Research, 2014, 42(11): 7450–7460
CrossRef Google scholar
[72]
Hong S H, Szili E J, Jenkins A T A, Short R D. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. Journal of Physics. D, Applied Physics, 2014, 47(36): 362001
CrossRef Google scholar
[73]
Szili E J, Bradley J W, Short R D. A ‘tissue model’ to study the plasma delivery of reactive oxygen species. Journal of Physics. D, Applied Physics, 2014, 47(15): 152002
CrossRef Google scholar
[74]
Hammer M U, Forbrig E, Kupsch S, Weltmann K D, Reuter S. Influence of plasma treatment on the structure and function of lipids. Plasma Medicine, 2013, 3(1-2): 97–114
CrossRef Google scholar

Acknowledgements

We acknowledge financial support from the Research Foundation−Flanders (FWO; Grant Nos. 1200216N and 11U5416N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We are also very thankful to R. Cordeiro for the very interesting discussions.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(4071 KB)

Accesses

Citations

Detail

Sections
Recommended

/