REVIEW ARTICLE

Mass transport mechanisms within pervaporation membranes

  • Yimeng Song 1,2 ,
  • Fusheng Pan 1,2 ,
  • Ying Li 1,2 ,
  • Kaidong Quan 1,2 ,
  • Zhongyi Jiang , 1,2
Expand
  • 1. Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
  • 2. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

Received date: 26 Jul 2018

Accepted date: 16 Sep 2018

Published date: 15 Sep 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Pervaporation is an energy-efficient membrane technology for separating liquid molecules of similar physical properties, which may compete or combine with distillation separation technology in a number of applications. With the rapid development of new membrane materials, the pervaporation performance was significantly improved. Fundamental understanding of the mass transport mechanisms is crucial for the rational design of membrane materials and efficient intensification of pervaporation process. Based on the interactions between permeate molecules and membranes, this review focuses on two categories of mass transport mechanisms within pervaporation membranes: physical mechanism (solution-diffusion mechanism, molecular sieving mechanism) and chemical mechanism (facilitated transport mechanism). Furthermore, the optimal integration and evolution of different mass transport mechanisms are briefly introduced. Material selection and relevant applications are highlighted under the guidance of mass transport mechanisms. Finally, the current challenges and future perspectives are tentatively identified.

Cite this article

Yimeng Song , Fusheng Pan , Ying Li , Kaidong Quan , Zhongyi Jiang . Mass transport mechanisms within pervaporation membranes[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(3) : 458 -474 . DOI: 10.1007/s11705-018-1780-1

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 21621004, 21490583, and 21576189), the State Key Laboratory of Separation Membranes and Membrane Processes (Tianjin Polytechnic University) (No. M2-201606), the National Science Fund for Distinguished Young Scholars (No. 21125627), the State Key Laboratory of Chemical Engineering (No. SKL-ChE-17B01) and the Programme of Introducing Talents of Discipline to Universities (No. B06006).
1
Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437

DOI

2
Shao P, Huang R Y M. Polymeric membrane pervaporation. Journal of Membrane Science, 2007, 287(2): 162–179

DOI

3
Ong Y K, Shi G M, Le N L, Tang Y P, Zuo J, Nunes S P, Chung T S. Recent membrane development for pervaporation processes. Progress in Polymer Science, 2016, 57: 1–31

DOI

4
Zhao J, Jin W Q. Manipulation of confined structure in alcohol-permselective pervaporation membranes. Chinese Journal of Chemical Engineering, 2017, 25(11): 1616–1626

DOI

5
Cao L, He X Y, Jiang Z Y, Li X Q, Li Y F, Ren Y X, Yang L X, Wu H. Channel-facilitated molecule and ion transport across polymer composite membranes. Chemical Society Reviews, 2017, 46(22): 6725–6745

DOI

6
Wang J W, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C Y, Mamba B B, Freger V, Verliefde A R D, Hoek E M V. A critical review of transport through osmotic membranes. Journal of Membrane Science, 2014, 454: 516–537

DOI

7
Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297

DOI

8
Chapman P D, Oliveira T, Livingston A G, Li K. Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 2008, 318(1-2): 5–37

DOI

9
Jiang L Y, Wang Y, Chung T S, Qiao X Y, Lai J Y. Polyimides membranes for pervaporation and biofuels separation. Progress in Polymer Science, 2009, 34(11): 1135–1160

DOI

10
Zhao Q, An Q F, Ji Y L, Qian J W, Gao C J. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. Journal of Membrane Science, 2011, 379(1-2): 19–45

DOI

11
Liu G P, Jin W Q, Xu N P. Graphene-based membranes. Chemical Society Reviews, 2015, 44(15): 5016–5030

DOI

12
Li X, Liu Y X, Wang J, Gascon J, Li J S, Van der Bruggen B. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144

DOI

13
Cheng X X, Pan F S, Wang M R, Li W D, Song Y M, Liu G H, Yang H, Gao B X, Wu H, Jiang Z Y. Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541: 329–346

DOI

14
Smitha B, Suhanya D, Sridhar S, Ramakrishna M. Separation of organic-organic mixtures by pervaporation: A review. Journal of Membrane Science, 2004, 241(1): 1–21

DOI

15
Zhang C, Peng L, Jiang J, Gu X H. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review. Chinese Journal of Chemical Engineering, 2017, 25(11): 1627–1638

DOI

16
Wang J, Zhu S, Xu C. Biochemistry. 3rd ed. Beijing: High Education Press, 2002, 1: 201–202

17
Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 1998, 285(3-4): 170–173

DOI

18
Némethy G. Hydrophobic interactions. Angewandte Chemie International Edition, 1967, 6(3): 195–206

DOI

19
Wijmans J G, Baker R W. The solution-diffusion model: A review. Journal of Membrane Science, 1995, 107(1-2): 1–21

DOI

20
Hansen C M. Hansen Solubility Parameters: A User’s Handbook. Florida: CRC Press, 2007, 4–17

21
Lodge T P. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Physical Review Letters, 1999, 83(16): 3218–3221

DOI

22
George S C, Thomas S. Transport phenomena through polymeric systems. Progress in Polymer Science, 2001, 26(6): 985–1017

DOI

23
Wu X M, Guo H, Soyekwo F, Zhang Q G, Lin C X, Liu Q L, Zhu A M. Pervaporation purification of ethylene glycol using the highly permeable PIM-1 membrane. Journal of Chemical & Engineering Data, 2016, 61(1): 579–586

DOI

24
Chen M M, Wu X M, Soyekwo F, Zhang Q G, Lv R X, Zhu A M, Liu Q L. Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. Separation and Purification Technology, 2017, 174: 166–173

DOI

25
Grimaldi J, Imbrogno J, Kilduff J, Belfort G. New class of synthetic membranes: Organophilic pervaporation brushes for organics recovery. Chemistry of Materials, 2015, 27(11): 4142–4148

DOI

26
Xu Y M, Tang Y P, Chung T S, Weber M, Maletzko C. Polyarylether membranes for dehydration of ethanol and methanol via pervaporation. Separation and Purification Technology, 2018, 193: 165–174

DOI

27
Bofinger A, Drake J A. Preferential permeability of methanol into water using polysilicone and poly(1-trimethylsilyl-1-propyne) membranes. Journal of Membrane Science, 2006, 285(1-2): 282–289

DOI

28
Du N Y, Park H B, Robertson G P, Dal-Cin M M, Visser T, Scoles L, Guiver M D. Polymer nanosieve membranes for CO2-capture applications. Nature Materials, 2011, 10(5): 372–375

DOI

29
Tan L X, Tan B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chemical Society Reviews, 2017, 46(11): 3322–3356

DOI

30
Tang Y P, Wang H, Chung T S. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol. ChemSusChem, 2015, 8(1): 138–147

DOI

31
Xu Y M, Japip S, Chung T S. Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549: 217–226

DOI

32
Zhao J, Zhao X T, Jiang Z Y, Li Z, Fan X C, Zhu J N, Wu H, Su Y L, Yang D, Pan F S, Shi J. Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39(9): 1668–1720

DOI

33
Yang H, Wu H, Yao Z Q, Shi B B, Xu Z, Cheng X X, Pan F S, Liu G H, Jiang Z Y, Cao X Z. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 583–591

DOI

34
Liu G H, Jiang Z Y, Cao K T, Nair S, Cheng X X, Zhao J, Gomaa H, Wu H, Pan F S. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523: 185–196

DOI

35
Wang M R, Xing R S, Wu H, Pan F S, Zhang J J, Ding H, Jiang Z Y. Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. Journal of Membrane Science, 2017, 538: 86–95

DOI

36
Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang W C, Xu J, Deng F, Simmons J M, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angewandte Chemie International Edition, 2009, 48(50): 9457–9460

DOI

37
Zou X Q, Zhu G S. Microporous organic materials for membrane-based gas separation. Advanced Materials, 2018, 30(3): 17000750

DOI

38
Cheng X Q, Konstas K, Doherty C M, Wood C D, Mulet X, Xie Z L, Ng D, Hill M R, Lau C H, Shao L. Organic microporous nanofillers with unique alcohol affinity for superior ethanol recovery toward sustainable biofuels. ChemSusChem, 2017, 10(9): 1887–1891

DOI

39
Zhang K, Lively R P, Zhang C, Chance R R, Koros W J, Sholl D S, Nair S. Exploring the framework hydrophobicity and flexibility of ZIF-8: From biofuel recovery to hydrocarbon separations. Journal of Physical Chemistry Letters, 2013, 4(21): 3618–3622

DOI

40
Zhang K, Lively R P, Zhang C, Koros W J, Chance R R. Investigating the intrinsic ethanol/water separation capability of ZIF-8: An adsorption and diffusion study. Journal of Physical Chemistry C, 2013, 117(14): 7214–7225

DOI

41
Wee L H, Li Y, Zhang K, Davit P, Bordiga S, Jiang J, Vankelecom I F J, Martens J A. Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: Mechanistic in-sights by Monte Carlo simulation and FTIR spectroscopy. Advanced Functional Materials, 2015, 25(4): 516–525

DOI

42
Liu X L, Li Y S, Zhu G Q, Ban Y J, Xu L Y, Yang W S. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angewandte Chemie International Edition, 2011, 50(45): 10636–10639

DOI

43
Fan H, Qi S, Hao Y, Ji S, Dong J, Zhang G. Simultaneous spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582

DOI

44
Sukitpaneenit P, Chung T S, Jiang L Y. Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol-water separation. Journal of Membrane Science, 2010, 362(1-2): 393–406

DOI

45
Zhang Y L, Benes N E, Lammertink R G H. Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chemical Engineering Journal, 2016, 284: 1342–1347

DOI

46
Yong W F, Salehian P, Zhang L L, Chung T S. Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2-C4 alcohols dehydration via pervaporation. Journal of Membrane Science, 2017, 523: 430–438

DOI

47
Friess K, Jansen J C, Vopička O, Randová A, Hynek V, Šípek M, Bartovská L, Izák P, Dingemans M, Dewulf J, et al. Comparative study of sorption and permeation techniques for the determination of heptane and toluene transport in polyethylene membranes. Journal of Membrane Science, 2009, 338(1): 161–174

DOI

48
Liu L, Kentish S E. Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature. Journal of Membrane Science, 2018, 553: 63–69

DOI

49
Mulder M. Thermodynamic Principles of Pervaporation: Pervaporation Membrane Separation Processes. Amsterdam: Elsevier, 1991, 225–250

50
Dawiec A, Witek-Krowiak A, Podstawczyk D, Pokomeda K. Mathematical modeling of sorption step in pervaporative aroma compounds recovery from the multicomponent solution. Chemical Engineering Science, 2015, 129: 78–90

DOI

51
Jain M, Attarde D, Gupta S K. Removal of thiophene from n-heptane/thiophene mixtures by spiral wound pervaporation module: Modelling, validation and influence of operating conditions. Journal of Membrane Science, 2015, 490: 328–345

DOI

52
Genduso G, Farrokhzad H, Latre Y, Darvishmanesh S, Luis P, Van der Bruggen B. Polyvinylidene fluoride dense membrane for the pervaporation of methyl acetate-methanol mixtures. Journal of Membrane Science, 2015, 482: 128–136

DOI

53
Elyassi B, Jeon M Y, Tsapatsis M, Narasimharao K, Basahel S N, Thabaiti S. Ethanol/water mixture pervaporation performance of b-oriented silicalite-1 membranes made by gel-free secondary growth. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(2): 556–563

DOI

54
Ashraf M T, Schmidt J E, Kujawa J, Kujawski W, Arafat H A. One-dimensional modeling of pervaporation systems using a semi-empirical flux model. Separation and Purification Technology, 2017, 174: 502–512

DOI

55
Kapteijn F, Moulijn J A, Krishna R. The generalized Maxwell-Stefan model for diffusion in zeolites: Sorbate molecules with different saturation loadings. Chemical Engineering Science, 2000, 55(15): 2923–2930

DOI

56
Lipnizki F, Tragardh G. Modelling of pervaporation: Models to analyze and predict the mass transport in pervaporation. Separation and Purification Methods, 2001, 30(1): 49–125

DOI

57
Mafi A, Raisi A, Hatam M, Aroujalian A. A mathematical model for mass transfer in hydrophobic pervaporation for organic compounds separation from aqueous solutions. Journal of Membrane Science, 2012, 423-424(12): 175–188

DOI

58
Feng H D. Modeling of vapor sorption in glassy polymers using a new dual mode sorption model based on multilayer sorption theory. Polymer, 2007, 48(10): 2988–3002

DOI

59
Ye P, Zhang Y, Wu H, Gu X. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(7): 2468–2478

DOI

60
Ebneyamini A, Azimi H, Tezel F H, Thibault J. Modelling of mixed matrix membranes: Validation of the resistance-based model. Journal of Membrane Science, 2017, 543: 361–369

DOI

61
Shieh J J, Huang R Y M. A pseudophase-change solution-diffusion model for pervaporation. II. Binary mixture permeation. Separation Science and Technology, 1998, 33(7): 933–957

DOI

62
Pera T M, Fite C, Sebastian V, Lorente E, Llorens J, Cunill F. Modeling pervaporation of ethanol/water mixtures within ‘Real’ zeolite NaA membranes. Industrial & Engineering Chemistry Research, 2008, 47(9): 3213–3224

DOI

63
Zhang W Y, Na S S, Li W X, Xing W H. Kinetic modeling of pervaporation aided esterification of propionic acid and ethanol using T-type zeolite membrane. Industrial & Engineering Chemistry Research, 2015, 54(18): 4940–4946

DOI

64
Krishna R. Describing mixture permeation across polymeric membranes by a combination of Maxwell-Stefan and Flory-Huggins models. Polymer, 2016, 103: 124–131

DOI

65
Zhuang X, Chen X, Su Y, Luo J, Feng S, Zhou H, Wan Y. Surface modification of silicalite-1 with alkoxysilanes to improve the performance of PDMS/silicalite-1 pervaporation membranes: Preparation, characterization and modeling. Journal of Membrane Science, 2016, 499: 386–395

DOI

66
Wang L D, Boutilier M S H, Kidambi P R, Jang D, Hadjiconstantinou N G, Karnik R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522

DOI

67
Gao X C, Ji G Z, Wang J C, Peng L, Gu X H, Chen L. Critical pore dimensions for gases in a BTESE-derived organic-inorganic hybrid silica: A theoretical analysis. Separation and Purification Technology, 2018, 191: 27–37

DOI

68
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249

DOI

69
Sekulic J, Elshof J E, Blank D H A. A microporous titania membrane for nanofiltration and pervaporation. Advanced Materials, 2004, 16(17): 1546–1550

DOI

70
Pera T M. Porous inorganic membranes for CO2 capture: Present and prospects. Chemical Reviews, 2014, 114(2): 1413–1492

DOI

71
Nishibayashi M, Yoshida H, Uenishi M, Kanezashi M, Nagasawa H, Yoshioka T, Tsuru T. Photo-induced sol-gel processing for low-temperature fabrication of high-performance silsesquioxane membranes for use in molecular separation. Chemical Communications, 2015, 51(49): 9932–9935

DOI

72
Araki S, Okabe A, Ogawa A, Gondo D, Imasaka S, Hasegawa Y, Sato K, Li K, Yamamoto H. Preparation and pervaporation performance of vinyl-functionalized silica membranes. Journal of Membrane Science, 2018, 548: 66–72

DOI

73
Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature, 2017, 543(7647): 690–694

DOI

74
Kim D, Jeon M Y, Stottrup B L, Tsapatsis M. para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface. Angewandte Chemie International Edition, 2018, 57(2): 480–485

DOI

75
Furukawa H, Gandara F, Zhang Y B, Jiang J C, Queen W L, Hudson M R, Yaghi O M. Water adsorption in porous metal-organic frameworks and related materials. Journal of the American Chemical Society, 2014, 136(11): 4369–4381

DOI

76
Wu F C, Lin L, Liu H O, Wang H T, Qiu J S, Zhang X F. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544: 342–350

DOI

77
Liu X L, Wang C H, Wang B, Li K. Novel organic-dehydration membranes prepared from zirconium metal-organic frameworks. Advanced Functional Materials, 2017, 27(3): 1604311

DOI

78
Ibrahim A, Lin Y S. Pervaporation separation of organic mixtures by MOF-5 membranes. Industrial & Engineering Chemistry Research, 2016, 55(31): 8652–8658

DOI

79
Liu G, Jin W, Xu N. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 2016, 55(43): 13384–13397

DOI

80
Kommu A, Singh J K. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: A molecular dynamics study. Journal of Physical Chemistry C, 2017, 121(14): 7867–7880

DOI

81
Yoon Y, Lee K, Kwon S, Seo S, Yoo H, Kim S, Shin Y, Park Y, Kim D, Choi J Y, Lee H. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano, 2014, 8(5): 4580–4590

DOI

82
Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 7049–7052

DOI

83
Liu G Z, Shen J, Liu Q, Liu G P, Xiong J, Yang J, Jin W Q. Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548: 548–558

DOI

84
Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014, 343(6172): 752–754

DOI

85
Tsou C H, An Q F, Lo S C, De G M, Hung W S, Hu C C, Lee K R, Lai J Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 2015, 477: 93–100

DOI

86
Qi B Y, He X F, Zeng G F, Pan Y C, Li G H, Liu G J, Zhang Y F, Chen W, Sun Y H. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nature Communications, 2017, 8(825): 1–10

DOI

87
Wan J Y, Lacey S D, Dai J Q, Bao W Z, Fuhrer M S, Hu L B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chemical Society Reviews, 2016, 45(24): 6742–6765

DOI

88
Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383

DOI

89
Hung W S, Tsou C H, De G M, An Q F, Liu Y L, Zhang Y M, Hu C C, Lee K R, Lai J Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chemistry of Materials, 2014, 26(9): 2983–2990

DOI

90
Yang J J, Gong D A, Li G H, Zeng G F, Wang Q Y, Zhang Y L, Liu G J, Wu P, Vovk E, Peng Z, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Advanced Materials, 2018, 30(16): 1705775

DOI

91
Li Y, Wang S, He G, Wu H, Pan F, Jiang Z. Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015, 44(1): 103–118

DOI

92
Cussler E L, Aris R, Bhown A. On the limits of facilitated diffusion. Journal of Membrane Science, 1989, 43(2): 149–164

DOI

93
Kim H S, Kim Y J, Kim J J, Lee S D, Kang Y S, Chin C S. Spectroscopic characterization of cellulose acetate polymer membranes containing Cu(1,3-butadiene)OTf as a facilitated olefin transport carrier. Chemistry of Materials, 2001, 13(5): 1720–1725

DOI

94
Hernandez M A J, Yang R T. Desulfurization of diesel fuels via π-complexation with nickel(II)-exchanged X- and Y-zeolites. Industrial & Engineering Chemistry Research, 2004, 43(4): 1081–1089

DOI

95
Yang Z J, Zhang W, Wang T, Li J D. Improved thiophene solution selectivity by Cu2+, Pb2+ and Mn2+ ions in pervaporative poly bis(p-methyl phenyl) phosphazene desulfurization membrane. Journal of Membrane Science, 2014, 454: 463–469

DOI

96
Takahashi A, Yang F H, Yang R T. New sorbents for desulfurization by π-complexation: Thiophene/benzene adsorption. Industrial & Engineering Chemistry Research, 2002, 41(10): 2487–2496

DOI

97
Safarik D J, Eldridge R B. Olefin/paraffin separations by reactive absorption: A review. Industrial & Engineering Chemistry Research, 1998, 37(7): 2571–2581

DOI

98
Yang R T. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003, 191–193

99
Martinez S, Valek L, Oslakovic I S. Adsorption of organic anions on low-carbon steel in saturated Ca(OH)2 and the HSAB principle. Journal of the Electrochemical Society, 2007, 154(11): 671–677

DOI

100
Li W, Pan F, Song Y, Wang M, Wang H, Walker S, Wu H, Jiang Z. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chinese Journal of Chemical Engineering, 2017, 25(11): 1563–1580

DOI

101
Kang Y S, Kang S W, Kim H, Kim J H, Won J, Kim C K, Char K. Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport. Advanced Materials, 2007, 19(3): 475–479

DOI

102
Tranchemontagne D J L, Ni Z, O’Keeffe M, Yaghi O M. Reticular chemistry of metal-organic polyhedra. Angewandte Chemie International Edition, 2008, 47(28): 5136–5147

DOI

103
Zhou L, Dai X Q, Du J J, Wang T, Wu L G, Tang Y C, Shen J. Fabrication of poly(MMA-co-ST) hybrid membranes containing AgCl nanoparticles by in situ ionic liquid microemulsion polymerization and enhancement of their separation performance. Industrial & Engineering Chemistry Research, 2015, 54(13): 3326–3332

DOI

104
Wu F, Cao Y, Liu H, Zhang X. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65

DOI

105
Li B, Xu D, Jiang Z Y, Zhang X F, Liu W P, Dong X A. Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline. Journal of Membrane Science, 2008, 322(2): 293–301

DOI

106
Yu S N, Pan F S, Yang S, Ding H, Jiang Z Y, Wang B Y, Li Z X, Cao X Z. Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135: 479–488

DOI

107
Zhang Y, Wang N X, Zhao C, Wang L, Ji S L, Li J R. Co(HCOO)(2)-based hybrid membranes for the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. Journal of Membrane Science, 2016, 520: 646–656

DOI

108
Zhao C, Wang N X, Wang L, Huang H L, Zhang R, Yang F, Xie Y B, Ji S L, Li J R. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation. Chemical Communications, 2014, 50(90): 13921–13923

DOI

109
Zhao C, Wang N X, Wang L, Sheng S N, Fan H W, Yang F, Ji S L, Li J R, Yu J M. Functionalized metal-organic polyhedra hybrid membranes for aromatic hydrocarbons recovery. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(10): 3706–3716

DOI

110
Pan F S, Wang M D, Ding H, Song Y M, Li W D, Wu H, Jiang Z Y, Wang B Y, Cao X Z. Embedding Ag+@COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552: 1–12

DOI

111
Lee H, Dellatore S M, Miller W M, Messersmith P B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430

DOI

112
Liu W P, Li B, Cao R J, Jiang Z Y, Yu S N, Liu G H, Wu H. Enhanced pervaporation performance of poly(dimethyl siloxane) membrane by incorporating titania microspheres with high silver ion loading. Journal of Membrane Science, 2011, 378(1-2): 382–392

DOI

113
Liu G, Zhou T, Liu W, Hu S, Pan F, Wu H, Jiang Z, Wang B, Yang J, Cao X. Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12907–12917

DOI

114
Yu S N, Jiang Z Y, Yang S, Ding H, Zhou B F, Gu K, Yang D, Pan F S, Wang B Y, Wang S, Cao X. Highly swelling resistant membranes for model gasoline desulfurization. Journal of Membrane Science, 2016, 514: 440–449

DOI

115
Janiak C.A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society-Dalton Transactions, 2000(21): 3885–3896

116
Hunter C A, Sanders J K M. The nature of π-π interactions. Journal of the American Chemical Society, 1990, 112(14): 5525–5534

DOI

117
Sha S, Kong Y, Yang J R. The pervaporation performance of C-60-filled ethyl cellulose hybrid membrane for gasoline desulfurization: Effect of operating temperature. Energy & Fuels, 2012, 26(11): 6925–6929

DOI

118
Wu T, Wang N X, Li J, Wang L, Zhang W, Zhang G J, Ji S L. Tubular thermal crosslinked-PEBA/ceramic membrane for aromatic/aliphatic pervaporation. Journal of Membrane Science, 2015, 486: 1–9

DOI

119
Gulhane H, Murthy Z V P. Separation of benzene-isooctane mixtures using poly(vinyl alcohol)/graphene composite pervaporation membranes. Journal of Polymer Materials, 2017, 34(2): 439–453

120
Wang T, Shen J N, Wu L G, Bruggen B V D. Improvement in the permeation performance of hybrid membranes by the incorporation of functional multi-walled carbon nanotubes. Journal of Membrane Science, 2014, 466(18): 338–347

DOI

121
Pan F S, Ding H, Li W D, Song Y M, Yang H, Wu H, Jiang Z Y, Wang B Y, Cao X Z. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545: 29–37

DOI

122
Yang H, Yuan B, Zhang X, Scherman O A. Supramolecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Accounts of Chemical Research, 2014, 47(7): 2106–2115

DOI

123
Liu J, Hua D, Zhang Y, Japip S, Chung T S. Precise molecular sieving architectures with janus pathways for both polar and nonpolar molecules. Advanced Materials, 2018, 30(11): 1705933

DOI

124
Takaba H, Way J D. Separation of isomeric xylenes using cyclodextrin-modified ceramic membranes. Industrial & Engineering Chemistry Research, 2003, 42(6): 1243–1252

DOI

125
Rolling P, Lamers M, Staudt C. Cross-linked membranes based on acrylated cyclodextrins and polyethylene glycol dimethacrylates for aromatic/aliphatic separation. Journal of Membrane Science, 2010, 362(1-2): 154–163

DOI

126
Wang Y, Chung T S, Wang H. Polyamide-imide membranes with surface immobilized cyclodextrin for butanol isomer separation via pervaporation. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(6): 1470–1484

DOI

127
Van Gestel T, Barthel J. New types of graphene-based membranes with molecular sieve properties for He, H2 and H2O. Journal of Membrane Science, 2018, 554: 378–384

DOI

128
Huang K, Liu G P, Shen J, Chu Z Y, Zhou H L, Gu X H, Jin W Q, Xu N P. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates. Advanced Functional Materials, 2015, 25(36): 5809–5815

DOI

129
Konios D, Stylianakis M M, Stratakis E, Kymakis E. Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014, 430: 108–112

DOI

130
Yang H, Wu H, Pan F S, Li Z, Ding H, Liu G H, Jiang Z Y, Zhang P, Cao X Z, Wang B Y. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520: 583–595

DOI

131
Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490: 72–83

DOI

132
Kuila S B, Ray S K. Separation of benzene-cyclohexane mixtures by filled blend membranes of carboxymethyl cellulose and sodium alginate. Separation and Purification Technology, 2014, 123: 45–52

DOI

133
Wang T, Zhao L, Chen Y F, Ding L F, Feng S, Wu L G, Wang Y X. Influence of modification of MWCNTs on the structure and performance of MWCNT-Poly (MMA-AM) hybrid membranes. Polymers for Advanced Technologies, 2014, 25(3): 288–293

DOI

134
Zhang X L, Qian L P, Wang H T, Zhong W, Du Q G. Pervaporation of benzene/cyclohexane mixtures through rhodium-loaded beta-zeolite-filled polyvinyl chloride hybrid membranes. Separation and Purification Technology, 2008, 63(2): 434–443

DOI

135
Yu S N, Jiang Z Y, Ding H, Pan F S, Wang B Y, Yang J, Cao X Z. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481: 73–81

DOI

136
Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 2005, 438(7064): 44

DOI

137
Sui H X, Han B G, Lee J K, Walian P, Jap B K. Structural basis of water-specific transport through the AQP1 water channel. Nature, 2001, 414(6866): 872–878

DOI

138
Wen L, Zhang X, Tian Y, Jiang L. Quantum-confined superfluidics: From nature to artificial. Science China Materials, 2018, 61(8): 1027–1032

DOI

139
Agre P. Aquaporin water channels (Nobel lecture). Angewandte Chemie International Edition, 2004, 43(33): 4278–4290

DOI

140
Kofinger J, Hummer G, Dellago C. Single-file water in nanopores. Physical Chemistry Chemical Physics, 2011, 13(34): 15403–15417

DOI

141
Horner A, Pohl P. Single-file transport of water through membrane channels. Faraday Discussions, 2018, 209: 9–33

DOI

142
Jin W Q, Yang C. Preface to special issue of membranes and membrane processes based on confined mass transfer. Chinese Journal of Chemical Engineering, 2017, 25(11): 1551

DOI

143
Bernardina S D, Paineau E, Brubach J B, Judeinstein P, Rouziere S, Launois P, Roy P. Water in carbon nanotubes: The peculiar hydrogen bond network revealed by Infrared spectroscopy. Journal of the American Chemical Society, 2016, 138(33): 10437–10443

DOI

144
Sajjan A M, Kumar B K J, Kittur A A, Kariduraganavar M Y. Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol. Journal of Membrane Science, 2013, 425: 77–88

DOI

145
Gao B X, Jiang Z Y, Zhao C H, Gomaa H, Pan F S. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. Journal of Membrane Science, 2015, 492: 230–241

DOI

146
Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444

DOI

147
Hung W S, An Q F, De Guzman M, Lin H Y, Huang S H, Liu W R, Hu C C, Lee K R, Lai J Y. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 2014, 68: 670–677

DOI

148
Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932

DOI

149
Cao K, Jiang Z, Zhao J, Zhao C, Gao C, Pan F, Wang B, Cao X, Yang J. Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. Journal of Membrane Science, 2014, 469: 272–283

DOI

150
Song Y, Jiang Z, Gao B, Wang H, Wang M, He Z, Cao X, Pan F. Embedding hydrophobic MoS2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185: 231–242

DOI

151
Dechnik J, Gascon J, Doonan C J, Janiak C, Sumby C J. Mixed-matrix membranes. Angewandte Chemie International Edition, 2017, 56(32): 9292–9310

DOI

152
Lively R P, Sholl D S. From water to organics in membrane separations. Nature Materials, 2017, 16(3): 276–279

DOI

153
Herm Z R, Wiers B M, Mason J A, van Baten J M, Hudson M R, Zajdel P, Brown C M, Masciocchi N, Krishna R, Long J R. Separation of hexane isomers in a metal-organic framework with triangular channels. Science, 2013, 340(6135): 960–964

DOI

154
Bao Z B, Chang G G, Xing H B, Krishna R, Ren Q L, Chen B L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy & Environmental Science, 2016, 9(12): 3612–3641

DOI

Outlines

/