Mass transport mechanisms within pervaporation membranes

Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang

PDF(1859 KB)
PDF(1859 KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (3) : 458-474. DOI: 10.1007/s11705-018-1780-1
REVIEW ARTICLE
REVIEW ARTICLE

Mass transport mechanisms within pervaporation membranes

Author information +
History +

Abstract

Pervaporation is an energy-efficient membrane technology for separating liquid molecules of similar physical properties, which may compete or combine with distillation separation technology in a number of applications. With the rapid development of new membrane materials, the pervaporation performance was significantly improved. Fundamental understanding of the mass transport mechanisms is crucial for the rational design of membrane materials and efficient intensification of pervaporation process. Based on the interactions between permeate molecules and membranes, this review focuses on two categories of mass transport mechanisms within pervaporation membranes: physical mechanism (solution-diffusion mechanism, molecular sieving mechanism) and chemical mechanism (facilitated transport mechanism). Furthermore, the optimal integration and evolution of different mass transport mechanisms are briefly introduced. Material selection and relevant applications are highlighted under the guidance of mass transport mechanisms. Finally, the current challenges and future perspectives are tentatively identified.

Graphical abstract

Keywords

pervaporation membrane / mass transport mechanisms / physical mechanism / chemical mechanism

Cite this article

Download citation ▾
Yimeng Song, Fusheng Pan, Ying Li, Kaidong Quan, Zhongyi Jiang. Mass transport mechanisms within pervaporation membranes. Front. Chem. Sci. Eng., 2019, 13(3): 458‒474 https://doi.org/10.1007/s11705-018-1780-1

References

[1]
Sholl D S, Lively R P. Seven chemical separations to change the world. Nature, 2016, 532(7600): 435–437
CrossRef Google scholar
[2]
Shao P, Huang R Y M. Polymeric membrane pervaporation. Journal of Membrane Science, 2007, 287(2): 162–179
CrossRef Google scholar
[3]
Ong Y K, Shi G M, Le N L, Tang Y P, Zuo J, Nunes S P, Chung T S. Recent membrane development for pervaporation processes. Progress in Polymer Science, 2016, 57: 1–31
CrossRef Google scholar
[4]
Zhao J, Jin W Q. Manipulation of confined structure in alcohol-permselective pervaporation membranes. Chinese Journal of Chemical Engineering, 2017, 25(11): 1616–1626
CrossRef Google scholar
[5]
Cao L, He X Y, Jiang Z Y, Li X Q, Li Y F, Ren Y X, Yang L X, Wu H. Channel-facilitated molecule and ion transport across polymer composite membranes. Chemical Society Reviews, 2017, 46(22): 6725–6745
CrossRef Google scholar
[6]
Wang J W, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C Y, Mamba B B, Freger V, Verliefde A R D, Hoek E M V. A critical review of transport through osmotic membranes. Journal of Membrane Science, 2014, 454: 516–537
CrossRef Google scholar
[7]
Koros W J, Zhang C. Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 2017, 16(3): 289–297
CrossRef Google scholar
[8]
Chapman P D, Oliveira T, Livingston A G, Li K. Membranes for the dehydration of solvents by pervaporation. Journal of Membrane Science, 2008, 318(1-2): 5–37
CrossRef Google scholar
[9]
Jiang L Y, Wang Y, Chung T S, Qiao X Y, Lai J Y. Polyimides membranes for pervaporation and biofuels separation. Progress in Polymer Science, 2009, 34(11): 1135–1160
CrossRef Google scholar
[10]
Zhao Q, An Q F, Ji Y L, Qian J W, Gao C J. Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. Journal of Membrane Science, 2011, 379(1-2): 19–45
CrossRef Google scholar
[11]
Liu G P, Jin W Q, Xu N P. Graphene-based membranes. Chemical Society Reviews, 2015, 44(15): 5016–5030
CrossRef Google scholar
[12]
Li X, Liu Y X, Wang J, Gascon J, Li J S, Van der Bruggen B. Metal-organic frameworks based membranes for liquid separation. Chemical Society Reviews, 2017, 46(23): 7124–7144
CrossRef Google scholar
[13]
Cheng X X, Pan F S, Wang M R, Li W D, Song Y M, Liu G H, Yang H, Gao B X, Wu H, Jiang Z Y. Hybrid membranes for pervaporation separations. Journal of Membrane Science, 2017, 541: 329–346
CrossRef Google scholar
[14]
Smitha B, Suhanya D, Sridhar S, Ramakrishna M. Separation of organic-organic mixtures by pervaporation: A review. Journal of Membrane Science, 2004, 241(1): 1–21
CrossRef Google scholar
[15]
Zhang C, Peng L, Jiang J, Gu X H. Mass transfer model, preparation and applications of zeolite membranes for pervaporation dehydration: A review. Chinese Journal of Chemical Engineering, 2017, 25(11): 1627–1638
CrossRef Google scholar
[16]
Wang J, Zhu S, Xu C. Biochemistry. 3rd ed. Beijing: High Education Press, 2002, 1: 201–202
[17]
Espinosa E, Molins E, Lecomte C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chemical Physics Letters, 1998, 285(3-4): 170–173
CrossRef Google scholar
[18]
Némethy G. Hydrophobic interactions. Angewandte Chemie International Edition, 1967, 6(3): 195–206
CrossRef Google scholar
[19]
Wijmans J G, Baker R W. The solution-diffusion model: A review. Journal of Membrane Science, 1995, 107(1-2): 1–21
CrossRef Google scholar
[20]
Hansen C M. Hansen Solubility Parameters: A User’s Handbook. Florida: CRC Press, 2007, 4–17
[21]
Lodge T P. Reconciliation of the molecular weight dependence of diffusion and viscosity in entangled polymers. Physical Review Letters, 1999, 83(16): 3218–3221
CrossRef Google scholar
[22]
George S C, Thomas S. Transport phenomena through polymeric systems. Progress in Polymer Science, 2001, 26(6): 985–1017
CrossRef Google scholar
[23]
Wu X M, Guo H, Soyekwo F, Zhang Q G, Lin C X, Liu Q L, Zhu A M. Pervaporation purification of ethylene glycol using the highly permeable PIM-1 membrane. Journal of Chemical & Engineering Data, 2016, 61(1): 579–586
CrossRef Google scholar
[24]
Chen M M, Wu X M, Soyekwo F, Zhang Q G, Lv R X, Zhu A M, Liu Q L. Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. Separation and Purification Technology, 2017, 174: 166–173
CrossRef Google scholar
[25]
Grimaldi J, Imbrogno J, Kilduff J, Belfort G. New class of synthetic membranes: Organophilic pervaporation brushes for organics recovery. Chemistry of Materials, 2015, 27(11): 4142–4148
CrossRef Google scholar
[26]
Xu Y M, Tang Y P, Chung T S, Weber M, Maletzko C. Polyarylether membranes for dehydration of ethanol and methanol via pervaporation. Separation and Purification Technology, 2018, 193: 165–174
CrossRef Google scholar
[27]
Bofinger A, Drake J A. Preferential permeability of methanol into water using polysilicone and poly(1-trimethylsilyl-1-propyne) membranes. Journal of Membrane Science, 2006, 285(1-2): 282–289
CrossRef Google scholar
[28]
Du N Y, Park H B, Robertson G P, Dal-Cin M M, Visser T, Scoles L, Guiver M D. Polymer nanosieve membranes for CO2-capture applications. Nature Materials, 2011, 10(5): 372–375
CrossRef Google scholar
[29]
Tan L X, Tan B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chemical Society Reviews, 2017, 46(11): 3322–3356
CrossRef Google scholar
[30]
Tang Y P, Wang H, Chung T S. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol. ChemSusChem, 2015, 8(1): 138–147
CrossRef Google scholar
[31]
Xu Y M, Japip S, Chung T S. Mixed matrix membranes with nano-sized functional UiO-66-type MOFs embedded in 6FDA-HAB/DABA polyimide for dehydration of C1-C3 alcohols via pervaporation. Journal of Membrane Science, 2018, 549: 217–226
CrossRef Google scholar
[32]
Zhao J, Zhao X T, Jiang Z Y, Li Z, Fan X C, Zhu J N, Wu H, Su Y L, Yang D, Pan F S, Shi J. Biomimetic and bioinspired membranes: Preparation and application. Progress in Polymer Science, 2014, 39(9): 1668–1720
CrossRef Google scholar
[33]
Yang H, Wu H, Yao Z Q, Shi B B, Xu Z, Cheng X X, Pan F S, Liu G H, Jiang Z Y, Cao X Z. Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(2): 583–591
CrossRef Google scholar
[34]
Liu G H, Jiang Z Y, Cao K T, Nair S, Cheng X X, Zhao J, Gomaa H, Wu H, Pan F S. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles. Journal of Membrane Science, 2017, 523: 185–196
CrossRef Google scholar
[35]
Wang M R, Xing R S, Wu H, Pan F S, Zhang J J, Ding H, Jiang Z Y. Nanocomposite membranes based on alginate matrix and high loading of pegylated POSS for pervaporation dehydration. Journal of Membrane Science, 2017, 538: 86–95
CrossRef Google scholar
[36]
Ben T, Ren H, Ma S Q, Cao D P, Lan J H, Jing X F, Wang W C, Xu J, Deng F, Simmons J M, et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angewandte Chemie International Edition, 2009, 48(50): 9457–9460
CrossRef Google scholar
[37]
Zou X Q, Zhu G S. Microporous organic materials for membrane-based gas separation. Advanced Materials, 2018, 30(3): 17000750
CrossRef Google scholar
[38]
Cheng X Q, Konstas K, Doherty C M, Wood C D, Mulet X, Xie Z L, Ng D, Hill M R, Lau C H, Shao L. Organic microporous nanofillers with unique alcohol affinity for superior ethanol recovery toward sustainable biofuels. ChemSusChem, 2017, 10(9): 1887–1891
CrossRef Google scholar
[39]
Zhang K, Lively R P, Zhang C, Chance R R, Koros W J, Sholl D S, Nair S. Exploring the framework hydrophobicity and flexibility of ZIF-8: From biofuel recovery to hydrocarbon separations. Journal of Physical Chemistry Letters, 2013, 4(21): 3618–3622
CrossRef Google scholar
[40]
Zhang K, Lively R P, Zhang C, Koros W J, Chance R R. Investigating the intrinsic ethanol/water separation capability of ZIF-8: An adsorption and diffusion study. Journal of Physical Chemistry C, 2013, 117(14): 7214–7225
CrossRef Google scholar
[41]
Wee L H, Li Y, Zhang K, Davit P, Bordiga S, Jiang J, Vankelecom I F J, Martens J A. Submicrometer-sized ZIF-71 filled organophilic membranes for improved bioethanol recovery: Mechanistic in-sights by Monte Carlo simulation and FTIR spectroscopy. Advanced Functional Materials, 2015, 25(4): 516–525
CrossRef Google scholar
[42]
Liu X L, Li Y S, Zhu G Q, Ban Y J, Xu L Y, Yang W S. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols. Angewandte Chemie International Edition, 2011, 50(45): 10636–10639
CrossRef Google scholar
[43]
Fan H, Qi S, Hao Y, Ji S, Dong J, Zhang G. Simultaneous spray self-assembly of highly loaded ZIF-8-PDMS nanohybrid membranes exhibiting exceptionally high biobutanol-permselective pervaporation. Angewandte Chemie International Edition, 2014, 53(22): 5578–5582
CrossRef Google scholar
[44]
Sukitpaneenit P, Chung T S, Jiang L Y. Modified pore-flow model for pervaporation mass transport in PVDF hollow fiber membranes for ethanol-water separation. Journal of Membrane Science, 2010, 362(1-2): 393–406
CrossRef Google scholar
[45]
Zhang Y L, Benes N E, Lammertink R G H. Performance study of pervaporation in a microfluidic system for the removal of acetone from water. Chemical Engineering Journal, 2016, 284: 1342–1347
CrossRef Google scholar
[46]
Yong W F, Salehian P, Zhang L L, Chung T S. Effects of hydrolyzed PIM-1 in polyimide-based membranes on C2-C4 alcohols dehydration via pervaporation. Journal of Membrane Science, 2017, 523: 430–438
CrossRef Google scholar
[47]
Friess K, Jansen J C, Vopička O, Randová A, Hynek V, Šípek M, Bartovská L, Izák P, Dingemans M, Dewulf J, et al. Comparative study of sorption and permeation techniques for the determination of heptane and toluene transport in polyethylene membranes. Journal of Membrane Science, 2009, 338(1): 161–174
CrossRef Google scholar
[48]
Liu L, Kentish S E. Pervaporation performance of crosslinked PVA membranes in the vicinity of the glass transition temperature. Journal of Membrane Science, 2018, 553: 63–69
CrossRef Google scholar
[49]
Mulder M. Thermodynamic Principles of Pervaporation: Pervaporation Membrane Separation Processes. Amsterdam: Elsevier, 1991, 225–250
[50]
Dawiec A, Witek-Krowiak A, Podstawczyk D, Pokomeda K. Mathematical modeling of sorption step in pervaporative aroma compounds recovery from the multicomponent solution. Chemical Engineering Science, 2015, 129: 78–90
CrossRef Google scholar
[51]
Jain M, Attarde D, Gupta S K. Removal of thiophene from n-heptane/thiophene mixtures by spiral wound pervaporation module: Modelling, validation and influence of operating conditions. Journal of Membrane Science, 2015, 490: 328–345
CrossRef Google scholar
[52]
Genduso G, Farrokhzad H, Latre Y, Darvishmanesh S, Luis P, Van der Bruggen B. Polyvinylidene fluoride dense membrane for the pervaporation of methyl acetate-methanol mixtures. Journal of Membrane Science, 2015, 482: 128–136
CrossRef Google scholar
[53]
Elyassi B, Jeon M Y, Tsapatsis M, Narasimharao K, Basahel S N, Thabaiti S. Ethanol/water mixture pervaporation performance of b-oriented silicalite-1 membranes made by gel-free secondary growth. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(2): 556–563
CrossRef Google scholar
[54]
Ashraf M T, Schmidt J E, Kujawa J, Kujawski W, Arafat H A. One-dimensional modeling of pervaporation systems using a semi-empirical flux model. Separation and Purification Technology, 2017, 174: 502–512
CrossRef Google scholar
[55]
Kapteijn F, Moulijn J A, Krishna R. The generalized Maxwell-Stefan model for diffusion in zeolites: Sorbate molecules with different saturation loadings. Chemical Engineering Science, 2000, 55(15): 2923–2930
CrossRef Google scholar
[56]
Lipnizki F, Tragardh G. Modelling of pervaporation: Models to analyze and predict the mass transport in pervaporation. Separation and Purification Methods, 2001, 30(1): 49–125
CrossRef Google scholar
[57]
Mafi A, Raisi A, Hatam M, Aroujalian A. A mathematical model for mass transfer in hydrophobic pervaporation for organic compounds separation from aqueous solutions. Journal of Membrane Science, 2012, 423-424(12): 175–188
CrossRef Google scholar
[58]
Feng H D. Modeling of vapor sorption in glassy polymers using a new dual mode sorption model based on multilayer sorption theory. Polymer, 2007, 48(10): 2988–3002
CrossRef Google scholar
[59]
Ye P, Zhang Y, Wu H, Gu X. Mass transfer simulation on pervaporation dehydration of ethanol through hollow fiber NaA zeolite membranes. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(7): 2468–2478
CrossRef Google scholar
[60]
Ebneyamini A, Azimi H, Tezel F H, Thibault J. Modelling of mixed matrix membranes: Validation of the resistance-based model. Journal of Membrane Science, 2017, 543: 361–369
CrossRef Google scholar
[61]
Shieh J J, Huang R Y M. A pseudophase-change solution-diffusion model for pervaporation. II. Binary mixture permeation. Separation Science and Technology, 1998, 33(7): 933–957
CrossRef Google scholar
[62]
Pera T M, Fite C, Sebastian V, Lorente E, Llorens J, Cunill F. Modeling pervaporation of ethanol/water mixtures within ‘Real’ zeolite NaA membranes. Industrial & Engineering Chemistry Research, 2008, 47(9): 3213–3224
CrossRef Google scholar
[63]
Zhang W Y, Na S S, Li W X, Xing W H. Kinetic modeling of pervaporation aided esterification of propionic acid and ethanol using T-type zeolite membrane. Industrial & Engineering Chemistry Research, 2015, 54(18): 4940–4946
CrossRef Google scholar
[64]
Krishna R. Describing mixture permeation across polymeric membranes by a combination of Maxwell-Stefan and Flory-Huggins models. Polymer, 2016, 103: 124–131
CrossRef Google scholar
[65]
Zhuang X, Chen X, Su Y, Luo J, Feng S, Zhou H, Wan Y. Surface modification of silicalite-1 with alkoxysilanes to improve the performance of PDMS/silicalite-1 pervaporation membranes: Preparation, characterization and modeling. Journal of Membrane Science, 2016, 499: 386–395
CrossRef Google scholar
[66]
Wang L D, Boutilier M S H, Kidambi P R, Jang D, Hadjiconstantinou N G, Karnik R. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nature Nanotechnology, 2017, 12(6): 509–522
CrossRef Google scholar
[67]
Gao X C, Ji G Z, Wang J C, Peng L, Gu X H, Chen L. Critical pore dimensions for gases in a BTESE-derived organic-inorganic hybrid silica: A theoretical analysis. Separation and Purification Technology, 2018, 191: 27–37
CrossRef Google scholar
[68]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–249
CrossRef Google scholar
[69]
Sekulic J, Elshof J E, Blank D H A. A microporous titania membrane for nanofiltration and pervaporation. Advanced Materials, 2004, 16(17): 1546–1550
CrossRef Google scholar
[70]
Pera T M. Porous inorganic membranes for CO2 capture: Present and prospects. Chemical Reviews, 2014, 114(2): 1413–1492
CrossRef Google scholar
[71]
Nishibayashi M, Yoshida H, Uenishi M, Kanezashi M, Nagasawa H, Yoshioka T, Tsuru T. Photo-induced sol-gel processing for low-temperature fabrication of high-performance silsesquioxane membranes for use in molecular separation. Chemical Communications, 2015, 51(49): 9932–9935
CrossRef Google scholar
[72]
Araki S, Okabe A, Ogawa A, Gondo D, Imasaka S, Hasegawa Y, Sato K, Li K, Yamamoto H. Preparation and pervaporation performance of vinyl-functionalized silica membranes. Journal of Membrane Science, 2018, 548: 66–72
CrossRef Google scholar
[73]
Jeon M Y, Kim D, Kumar P, Lee P S, Rangnekar N, Bai P, Shete M, Elyassi B, Lee H S, Narasimharao K, et al. Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature, 2017, 543(7647): 690–694
CrossRef Google scholar
[74]
Kim D, Jeon M Y, Stottrup B L, Tsapatsis M. para-Xylene ultra-selective zeolite MFI membranes fabricated from nanosheet monolayers at the air-water interface. Angewandte Chemie International Edition, 2018, 57(2): 480–485
CrossRef Google scholar
[75]
Furukawa H, Gandara F, Zhang Y B, Jiang J C, Queen W L, Hudson M R, Yaghi O M. Water adsorption in porous metal-organic frameworks and related materials. Journal of the American Chemical Society, 2014, 136(11): 4369–4381
CrossRef Google scholar
[76]
Wu F C, Lin L, Liu H O, Wang H T, Qiu J S, Zhang X F. Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544: 342–350
CrossRef Google scholar
[77]
Liu X L, Wang C H, Wang B, Li K. Novel organic-dehydration membranes prepared from zirconium metal-organic frameworks. Advanced Functional Materials, 2017, 27(3): 1604311
CrossRef Google scholar
[78]
Ibrahim A, Lin Y S. Pervaporation separation of organic mixtures by MOF-5 membranes. Industrial & Engineering Chemistry Research, 2016, 55(31): 8652–8658
CrossRef Google scholar
[79]
Liu G, Jin W, Xu N. Two-dimensional-material membranes: A new family of high-performance separation membranes. Angewandte Chemie International Edition, 2016, 55(43): 13384–13397
CrossRef Google scholar
[80]
Kommu A, Singh J K. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: A molecular dynamics study. Journal of Physical Chemistry C, 2017, 121(14): 7867–7880
CrossRef Google scholar
[81]
Yoon Y, Lee K, Kwon S, Seo S, Yoo H, Kim S, Shin Y, Park Y, Kim D, Choi J Y, Lee H. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano, 2014, 8(5): 4580–4590
CrossRef Google scholar
[82]
Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 7049–7052
CrossRef Google scholar
[83]
Liu G Z, Shen J, Liu Q, Liu G P, Xiong J, Yang J, Jin W Q. Ultrathin two-dimensional MXene membrane for pervaporation desalination. Journal of Membrane Science, 2018, 548: 548–558
CrossRef Google scholar
[84]
Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 2014, 343(6172): 752–754
CrossRef Google scholar
[85]
Tsou C H, An Q F, Lo S C, De G M, Hung W S, Hu C C, Lee K R, Lai J Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 2015, 477: 93–100
CrossRef Google scholar
[86]
Qi B Y, He X F, Zeng G F, Pan Y C, Li G H, Liu G J, Zhang Y F, Chen W, Sun Y H. Strict molecular sieving over electrodeposited 2D-interspacing-narrowed graphene oxide membranes. Nature Communications, 2017, 8(825): 1–10
CrossRef Google scholar
[87]
Wan J Y, Lacey S D, Dai J Q, Bao W Z, Fuhrer M S, Hu L B. Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chemical Society Reviews, 2016, 45(24): 6742–6765
CrossRef Google scholar
[88]
Chen L, Shi G S, Shen J, Peng B Q, Zhang B W, Wang Y Z, Bian F G, Wang J J, Li D Y, Qian Z, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550(7676): 380–383
CrossRef Google scholar
[89]
Hung W S, Tsou C H, De G M, An Q F, Liu Y L, Zhang Y M, Hu C C, Lee K R, Lai J Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chemistry of Materials, 2014, 26(9): 2983–2990
CrossRef Google scholar
[90]
Yang J J, Gong D A, Li G H, Zeng G F, Wang Q Y, Zhang Y L, Liu G J, Wu P, Vovk E, Peng Z, et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Advanced Materials, 2018, 30(16): 1705775
CrossRef Google scholar
[91]
Li Y, Wang S, He G, Wu H, Pan F, Jiang Z. Facilitated transport of small molecules and ions for energy-efficient membranes. Chemical Society Reviews, 2015, 44(1): 103–118
CrossRef Google scholar
[92]
Cussler E L, Aris R, Bhown A. On the limits of facilitated diffusion. Journal of Membrane Science, 1989, 43(2): 149–164
CrossRef Google scholar
[93]
Kim H S, Kim Y J, Kim J J, Lee S D, Kang Y S, Chin C S. Spectroscopic characterization of cellulose acetate polymer membranes containing Cu(1,3-butadiene)OTf as a facilitated olefin transport carrier. Chemistry of Materials, 2001, 13(5): 1720–1725
CrossRef Google scholar
[94]
Hernandez M A J, Yang R T. Desulfurization of diesel fuels via π-complexation with nickel(II)-exchanged X- and Y-zeolites. Industrial & Engineering Chemistry Research, 2004, 43(4): 1081–1089
CrossRef Google scholar
[95]
Yang Z J, Zhang W, Wang T, Li J D. Improved thiophene solution selectivity by Cu2+, Pb2+ and Mn2+ ions in pervaporative poly bis(p-methyl phenyl) phosphazene desulfurization membrane. Journal of Membrane Science, 2014, 454: 463–469
CrossRef Google scholar
[96]
Takahashi A, Yang F H, Yang R T. New sorbents for desulfurization by π-complexation: Thiophene/benzene adsorption. Industrial & Engineering Chemistry Research, 2002, 41(10): 2487–2496
CrossRef Google scholar
[97]
Safarik D J, Eldridge R B. Olefin/paraffin separations by reactive absorption: A review. Industrial & Engineering Chemistry Research, 1998, 37(7): 2571–2581
CrossRef Google scholar
[98]
Yang R T. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003, 191–193
[99]
Martinez S, Valek L, Oslakovic I S. Adsorption of organic anions on low-carbon steel in saturated Ca(OH)2 and the HSAB principle. Journal of the Electrochemical Society, 2007, 154(11): 671–677
CrossRef Google scholar
[100]
Li W, Pan F, Song Y, Wang M, Wang H, Walker S, Wu H, Jiang Z. Construction of molecule-selective mixed matrix membranes with confined mass transfer structure. Chinese Journal of Chemical Engineering, 2017, 25(11): 1563–1580
CrossRef Google scholar
[101]
Kang Y S, Kang S W, Kim H, Kim J H, Won J, Kim C K, Char K. Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport. Advanced Materials, 2007, 19(3): 475–479
CrossRef Google scholar
[102]
Tranchemontagne D J L, Ni Z, O’Keeffe M, Yaghi O M. Reticular chemistry of metal-organic polyhedra. Angewandte Chemie International Edition, 2008, 47(28): 5136–5147
CrossRef Google scholar
[103]
Zhou L, Dai X Q, Du J J, Wang T, Wu L G, Tang Y C, Shen J. Fabrication of poly(MMA-co-ST) hybrid membranes containing AgCl nanoparticles by in situ ionic liquid microemulsion polymerization and enhancement of their separation performance. Industrial & Engineering Chemistry Research, 2015, 54(13): 3326–3332
CrossRef Google scholar
[104]
Wu F, Cao Y, Liu H, Zhang X. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556: 54–65
CrossRef Google scholar
[105]
Li B, Xu D, Jiang Z Y, Zhang X F, Liu W P, Dong X A. Pervaporation performance of PDMS-Ni2+Y zeolite hybrid membranes in the desulfurization of gasoline. Journal of Membrane Science, 2008, 322(2): 293–301
CrossRef Google scholar
[106]
Yu S N, Pan F S, Yang S, Ding H, Jiang Z Y, Wang B Y, Li Z X, Cao X Z. Enhanced pervaporation performance of MIL-101 (Cr) filled polysiloxane hybrid membranes in desulfurization of model gasoline. Chemical Engineering Science, 2015, 135: 479–488
CrossRef Google scholar
[107]
Zhang Y, Wang N X, Zhao C, Wang L, Ji S L, Li J R. Co(HCOO)(2)-based hybrid membranes for the pervaporation separation of aromatic/aliphatic hydrocarbon mixtures. Journal of Membrane Science, 2016, 520: 646–656
CrossRef Google scholar
[108]
Zhao C, Wang N X, Wang L, Huang H L, Zhang R, Yang F, Xie Y B, Ji S L, Li J R. Hybrid membranes of metal-organic molecule nanocages for aromatic/aliphatic hydrocarbon separation by pervaporation. Chemical Communications, 2014, 50(90): 13921–13923
CrossRef Google scholar
[109]
Zhao C, Wang N X, Wang L, Sheng S N, Fan H W, Yang F, Ji S L, Li J R, Yu J M. Functionalized metal-organic polyhedra hybrid membranes for aromatic hydrocarbons recovery. AIChE Journal. American Institute of Chemical Engineers, 2016, 62(10): 3706–3716
CrossRef Google scholar
[110]
Pan F S, Wang M D, Ding H, Song Y M, Li W D, Wu H, Jiang Z Y, Wang B Y, Cao X Z. Embedding Ag+@COFs within Pebax membrane to confer mass transport channels and facilitated transport sites for elevated desulfurization performance. Journal of Membrane Science, 2018, 552: 1–12
CrossRef Google scholar
[111]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Mussel-inspired surface chemistry for multifunctional coatings. Science, 2007, 318(5849): 426–430
CrossRef Google scholar
[112]
Liu W P, Li B, Cao R J, Jiang Z Y, Yu S N, Liu G H, Wu H. Enhanced pervaporation performance of poly(dimethyl siloxane) membrane by incorporating titania microspheres with high silver ion loading. Journal of Membrane Science, 2011, 378(1-2): 382–392
CrossRef Google scholar
[113]
Liu G, Zhou T, Liu W, Hu S, Pan F, Wu H, Jiang Z, Wang B, Yang J, Cao X. Enhanced desulfurization performance of PDMS membranes by incorporating silver decorated dopamine nanoparticles. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(32): 12907–12917
CrossRef Google scholar
[114]
Yu S N, Jiang Z Y, Yang S, Ding H, Zhou B F, Gu K, Yang D, Pan F S, Wang B Y, Wang S, Cao X. Highly swelling resistant membranes for model gasoline desulfurization. Journal of Membrane Science, 2016, 514: 440–449
CrossRef Google scholar
[115]
Janiak C.A critical account on π-π stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society-Dalton Transactions, 2000(21): 3885–3896
[116]
Hunter C A, Sanders J K M. The nature of π-π interactions. Journal of the American Chemical Society, 1990, 112(14): 5525–5534
CrossRef Google scholar
[117]
Sha S, Kong Y, Yang J R. The pervaporation performance of C-60-filled ethyl cellulose hybrid membrane for gasoline desulfurization: Effect of operating temperature. Energy & Fuels, 2012, 26(11): 6925–6929
CrossRef Google scholar
[118]
Wu T, Wang N X, Li J, Wang L, Zhang W, Zhang G J, Ji S L. Tubular thermal crosslinked-PEBA/ceramic membrane for aromatic/aliphatic pervaporation. Journal of Membrane Science, 2015, 486: 1–9
CrossRef Google scholar
[119]
Gulhane H, Murthy Z V P. Separation of benzene-isooctane mixtures using poly(vinyl alcohol)/graphene composite pervaporation membranes. Journal of Polymer Materials, 2017, 34(2): 439–453
[120]
Wang T, Shen J N, Wu L G, Bruggen B V D. Improvement in the permeation performance of hybrid membranes by the incorporation of functional multi-walled carbon nanotubes. Journal of Membrane Science, 2014, 466(18): 338–347
CrossRef Google scholar
[121]
Pan F S, Ding H, Li W D, Song Y M, Yang H, Wu H, Jiang Z Y, Wang B Y, Cao X Z. Constructing facilitated transport pathway in hybrid membranes by incorporating MoS2 nanosheets. Journal of Membrane Science, 2018, 545: 29–37
CrossRef Google scholar
[122]
Yang H, Yuan B, Zhang X, Scherman O A. Supramolecular chemistry at interfaces: Host-guest interactions for fabricating multifunctional biointerfaces. Accounts of Chemical Research, 2014, 47(7): 2106–2115
CrossRef Google scholar
[123]
Liu J, Hua D, Zhang Y, Japip S, Chung T S. Precise molecular sieving architectures with janus pathways for both polar and nonpolar molecules. Advanced Materials, 2018, 30(11): 1705933
CrossRef Google scholar
[124]
Takaba H, Way J D. Separation of isomeric xylenes using cyclodextrin-modified ceramic membranes. Industrial & Engineering Chemistry Research, 2003, 42(6): 1243–1252
CrossRef Google scholar
[125]
Rolling P, Lamers M, Staudt C. Cross-linked membranes based on acrylated cyclodextrins and polyethylene glycol dimethacrylates for aromatic/aliphatic separation. Journal of Membrane Science, 2010, 362(1-2): 154–163
CrossRef Google scholar
[126]
Wang Y, Chung T S, Wang H. Polyamide-imide membranes with surface immobilized cyclodextrin for butanol isomer separation via pervaporation. AIChE Journal. American Institute of Chemical Engineers, 2011, 57(6): 1470–1484
CrossRef Google scholar
[127]
Van Gestel T, Barthel J. New types of graphene-based membranes with molecular sieve properties for He, H2 and H2O. Journal of Membrane Science, 2018, 554: 378–384
CrossRef Google scholar
[128]
Huang K, Liu G P, Shen J, Chu Z Y, Zhou H L, Gu X H, Jin W Q, Xu N P. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates. Advanced Functional Materials, 2015, 25(36): 5809–5815
CrossRef Google scholar
[129]
Konios D, Stylianakis M M, Stratakis E, Kymakis E. Dispersion behaviour of graphene oxide and reduced graphene oxide. Journal of Colloid and Interface Science, 2014, 430: 108–112
CrossRef Google scholar
[130]
Yang H, Wu H, Pan F S, Li Z, Ding H, Liu G H, Jiang Z Y, Zhang P, Cao X Z, Wang B Y. Highly water-permeable and stable hybrid membrane with asymmetric covalent organic framework distribution. Journal of Membrane Science, 2016, 520: 583–595
CrossRef Google scholar
[131]
Cao K, Jiang Z, Zhang X, Zhang Y, Zhao J, Xing R, Yang S, Gao C, Pan F. Highly water-selective hybrid membrane by incorporating g-C3N4 nanosheets into polymer matrix. Journal of Membrane Science, 2015, 490: 72–83
CrossRef Google scholar
[132]
Kuila S B, Ray S K. Separation of benzene-cyclohexane mixtures by filled blend membranes of carboxymethyl cellulose and sodium alginate. Separation and Purification Technology, 2014, 123: 45–52
CrossRef Google scholar
[133]
Wang T, Zhao L, Chen Y F, Ding L F, Feng S, Wu L G, Wang Y X. Influence of modification of MWCNTs on the structure and performance of MWCNT-Poly (MMA-AM) hybrid membranes. Polymers for Advanced Technologies, 2014, 25(3): 288–293
CrossRef Google scholar
[134]
Zhang X L, Qian L P, Wang H T, Zhong W, Du Q G. Pervaporation of benzene/cyclohexane mixtures through rhodium-loaded beta-zeolite-filled polyvinyl chloride hybrid membranes. Separation and Purification Technology, 2008, 63(2): 434–443
CrossRef Google scholar
[135]
Yu S N, Jiang Z Y, Ding H, Pan F S, Wang B Y, Yang J, Cao X Z. Elevated pervaporation performance of polysiloxane membrane using channels and active sites of metal organic framework CuBTC. Journal of Membrane Science, 2015, 481: 73–81
CrossRef Google scholar
[136]
Majumder M, Chopra N, Andrews R, Hinds B J. Nanoscale hydrodynamics: Enhanced flow in carbon nanotubes. Nature, 2005, 438(7064): 44
CrossRef Google scholar
[137]
Sui H X, Han B G, Lee J K, Walian P, Jap B K. Structural basis of water-specific transport through the AQP1 water channel. Nature, 2001, 414(6866): 872–878
CrossRef Google scholar
[138]
Wen L, Zhang X, Tian Y, Jiang L. Quantum-confined superfluidics: From nature to artificial. Science China Materials, 2018, 61(8): 1027–1032
CrossRef Google scholar
[139]
Agre P. Aquaporin water channels (Nobel lecture). Angewandte Chemie International Edition, 2004, 43(33): 4278–4290
CrossRef Google scholar
[140]
Kofinger J, Hummer G, Dellago C. Single-file water in nanopores. Physical Chemistry Chemical Physics, 2011, 13(34): 15403–15417
CrossRef Google scholar
[141]
Horner A, Pohl P. Single-file transport of water through membrane channels. Faraday Discussions, 2018, 209: 9–33
CrossRef Google scholar
[142]
Jin W Q, Yang C. Preface to special issue of membranes and membrane processes based on confined mass transfer. Chinese Journal of Chemical Engineering, 2017, 25(11): 1551
CrossRef Google scholar
[143]
Bernardina S D, Paineau E, Brubach J B, Judeinstein P, Rouziere S, Launois P, Roy P. Water in carbon nanotubes: The peculiar hydrogen bond network revealed by Infrared spectroscopy. Journal of the American Chemical Society, 2016, 138(33): 10437–10443
CrossRef Google scholar
[144]
Sajjan A M, Kumar B K J, Kittur A A, Kariduraganavar M Y. Novel approach for the development of pervaporation membranes using sodium alginate and chitosan-wrapped multiwalled carbon nanotubes for the dehydration of isopropanol. Journal of Membrane Science, 2013, 425: 77–88
CrossRef Google scholar
[145]
Gao B X, Jiang Z Y, Zhao C H, Gomaa H, Pan F S. Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers. Journal of Membrane Science, 2015, 492: 230–241
CrossRef Google scholar
[146]
Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 2012, 335(6067): 442–444
CrossRef Google scholar
[147]
Hung W S, An Q F, De Guzman M, Lin H Y, Huang S H, Liu W R, Hu C C, Lee K R, Lai J Y. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide. Carbon, 2014, 68: 670–677
CrossRef Google scholar
[148]
Huang K, Liu G, Lou Y, Dong Z, Shen J, Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angewandte Chemie International Edition, 2014, 53(27): 6929–6932
CrossRef Google scholar
[149]
Cao K, Jiang Z, Zhao J, Zhao C, Gao C, Pan F, Wang B, Cao X, Yang J. Enhanced water permeation through sodium alginate membranes by incorporating graphene oxides. Journal of Membrane Science, 2014, 469: 272–283
CrossRef Google scholar
[150]
Song Y, Jiang Z, Gao B, Wang H, Wang M, He Z, Cao X, Pan F. Embedding hydrophobic MoS2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chemical Engineering Science, 2018, 185: 231–242
CrossRef Google scholar
[151]
Dechnik J, Gascon J, Doonan C J, Janiak C, Sumby C J. Mixed-matrix membranes. Angewandte Chemie International Edition, 2017, 56(32): 9292–9310
CrossRef Google scholar
[152]
Lively R P, Sholl D S. From water to organics in membrane separations. Nature Materials, 2017, 16(3): 276–279
CrossRef Google scholar
[153]
Herm Z R, Wiers B M, Mason J A, van Baten J M, Hudson M R, Zajdel P, Brown C M, Masciocchi N, Krishna R, Long J R. Separation of hexane isomers in a metal-organic framework with triangular channels. Science, 2013, 340(6135): 960–964
CrossRef Google scholar
[154]
Bao Z B, Chang G G, Xing H B, Krishna R, Ren Q L, Chen B L. Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures. Energy & Environmental Science, 2016, 9(12): 3612–3641
CrossRef Google scholar

Acknowledgments

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 21621004, 21490583, and 21576189), the State Key Laboratory of Separation Membranes and Membrane Processes (Tianjin Polytechnic University) (No. M2-201606), the National Science Fund for Distinguished Young Scholars (No. 21125627), the State Key Laboratory of Chemical Engineering (No. SKL-ChE-17B01) and the Programme of Introducing Talents of Discipline to Universities (No. B06006).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1859 KB)

Accesses

Citations

Detail

Sections
Recommended

/