Frontiers of Chemical Science and Engineering >
Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light
Received date: 27 Nov 2018
Accepted date: 07 Jan 2019
Published date: 15 Dec 2019
Copyright
A strategy of intensifying the visible light harvesting ability of anatase TiO2 hollow spheres (HSs) was developed, in which both sides of TiO2 HSs were utilised for stabilising Au nanoparticles (NPs) through the sacrificial templating method and convex surface-induced confinement. The composite structure of single Au NP yolk-TiO2 shell-Au NPs, denoted as Au@Au(TiO2, was rendered and confirmed by the transmission electron microscopy analysis. Au@Au(TiO2 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(TiO2 by 77% and Au@P25 by 52%, respectively, in phenol degradation.
Jianwei Lu , Lan Lan , Xiaoteng Terence Liu , Na Wang , Xiaolei Fan . Plasmonic Au nanoparticles supported on both sides of TiO2 hollow spheres for maximising photocatalytic activity under visible light[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(4) : 665 -671 . DOI: 10.1007/s11705-019-1815-2
1 |
Schrauben J N, Hayoun R, Valdez C N, Braten M, Fridley L, Mayer J M. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science, 2012, 336(6086): 1298–1301
|
2 |
Gratzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
|
3 |
Caravaca A, Daly H, Smith M, Mills A, Chansai S, Hardacre C. Continuous flow gas phase photoreforming of methanol at elevated reaction temperatures sensitised by Pt/TiO2. Reaction Chemistry & Engineering, 2016, 1(6): 649–657
|
4 |
Caravaca A, Jones W, Hardacre C, Bowker M H. Hydrogen production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2016, 472
|
5 |
Palmisano L, Sclafani A. Thermodynamics and kinetics for heterogeneous photocatalytic processes. In: Schiavello M, ed. Heterogeneous Photocatalysis. New York: John Wiley & Sons, 1997, 109–132
|
6 |
Cong Y, Zhang J, Chen F, Anpo M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. Journal of Physical Chemistry C, 2007, 111(19): 6976–6982
|
7 |
Meng Q, Wang T, Liu E, Ma X, Ge Q, Gong J. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Physical Chemistry Chemical Physics, 2013, 15(24): 9549–9561
|
8 |
Lu J, Su F, Huang Z, Zhang C, Liu Y, Ma X, Gong J. N-Doped Ag/TiO2 hollow spheres for highly efficient photocatalysis under visible-light irradiation. RSC Advances, 2013, 3(3): 720–724
|
9 |
Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244
|
10 |
Pan H, Zhang Y W, Shenoy V B, Gao H. Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. Journal of Physical Chemistry C, 2011, 115(24): 12224–12231
|
11 |
Pelaez M, Nolan N, Pillai S, Seery M, Falaras P, Patrick A G, Jeremy S M, Hamiltone W J, Byrne J A, O’Shea K,
|
12 |
Dozzi M V, Selli E. Doping TiO2 with p-block elements: Effects on photocatalytic activity. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 14: 13–28
|
13 |
Kamat P V. TiO2 nanostructures: Recent physical chemistry advances. Journal of Physical Chemistry C, 2012, 116(22): 11849–11851
|
14 |
Li L, Yan J, Wang T, Zhao Z J, Zhang J, Gong J, Guan N. 10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 5881
|
15 |
Ansari S A, Khan M M, Ansari M O, Cho M H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry, 2016, 40(4): 3000–3009
|
16 |
Li L, Meng F, Hu X, Qiao L, Sun C Q, Tian H, Zheng W. TiO2 band restructuring by B and P dopants. PLoS One, 2016, 11(4): e0152726
|
17 |
Lu J, Zhang P, Li A, Su F, Wang T, Liu Y, Gong J. Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis. Chemical Communications (Cambridge), 2013, 49(52): 5817–5819
|
18 |
Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637
|
19 |
Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 2008, 130(5): 1676–1680
|
20 |
Lee I, Joo J B, Yin Y D, Zaera F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10208–10211
|
21 |
Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 2011, 10(12): 911–921
|
22 |
Zhang Q, Jin X, Xu Z, Zhang J, Rendón U F, Razzari L, Chaker M, Ma D. Plasmonic Au-loaded hierarchical hollow Porous TiO2 spheres: Synergistic catalysts for nitroaromatic reduction. Journal of Physical Chemistry Letters, 2018, 9(18): 5317–5326
|
23 |
Joo J B, Dahl M, Li N, Zaera F, Yin Y. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy & Environmental Science, 2013, 6(7): 2082–2092
|
24 |
Joo J B, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5(4): 6321–6327
|
25 |
Dillon R J, Joo J B, Zaera F, Yin Y, Bardeen C J. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core-shell nanostructures. Physical Chemistry Chemical Physics, 2013, 15(5): 1488–1496
|
26 |
Lee Y J, Joo J B, Yin Y, Zaera F. Evaluation of the effective photoexcitation distances in the photocatalytic production of H2 from water using Au@void@TiO2 yolk-shell nanostructures. ACS Energy Letters, 2016, 1(1): 52–56
|
27 |
Lee I, Joo J B, Yin Y, Zaera F. Au@Void@TiO2 yolk-shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surface Science, 2016, 648: 150–155
|
28 |
José-Yacamán M, Gutierrez-Wing C, Miki M, Yang D Q, Piyakis K N, Sacher E. Surface diffusion and coalescence of mobile metal nanoparticles. Journal of Physical Chemistry B, 2005, 109(19): 9703–9711
|
29 |
Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir, 1996, 12(18): 4329–4335
|
30 |
Bian Z, Tachikawa T, Zhang P, Fujitsuka M, Majima T. Au/TiO2 Superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. Journal of the American Chemical Society, 2014, 136(1): 458–465
|
31 |
Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M. Optical spectroscopy of nanometric holes in thin gold films. Nano Letters, 2004, 4(6): 1003–1007
|
32 |
Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314
|
33 |
Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir, 2009, 25(11): 6438–6447
|
/
〈 | 〉 |