Plasmonic Au nanoparticles supported on both sides of TiO 2 hollow spheres for maximising photocatalytic activity under visible light

Jianwei Lu , Lan Lan , Xiaoteng Terence Liu , Na Wang , Xiaolei Fan

Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (4) : 665 -671.

PDF (2213KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (4) : 665 -671. DOI: 10.1007/s11705-019-1815-2
COMMUNICATION
COMMUNICATION

Plasmonic Au nanoparticles supported on both sides of TiO 2 hollow spheres for maximising photocatalytic activity under visible light

Author information +
History +
PDF (2213KB)

Abstract

A strategy of intensifying the visible light harvesting ability of anatase TiO 2 hollow spheres (HSs) was developed, in which both sides of TiO 2 HSs were utilised for stabilising Au nanoparticles (NPs) through the sacrificial templating method and convex surface-induced confinement. The composite structure of single Au NP yolk-TiO 2 shell-Au NPs, denoted as Au@Au(TiO 2, was rendered and confirmed by the transmission electron microscopy analysis. Au@Au(TiO 2 showed enhanced photocatalytic activity in the degradation of methylene blue and phenol in aqueous phase under visible light surpassing that of other reference materials such as Au(TiO 2 by 77% and Au@P25 by 52%, respectively, in phenol degradation.

Graphical abstract

Keywords

TiO 2 hollow spheres / plasmonic Au nanoparticles / confinement / visible light / photocatalytic degradation

Cite this article

Download citation ▾
Jianwei Lu, Lan Lan, Xiaoteng Terence Liu, Na Wang, Xiaolei Fan. Plasmonic Au nanoparticles supported on both sides of TiO 2 hollow spheres for maximising photocatalytic activity under visible light. Front. Chem. Sci. Eng., 2019, 13(4): 665-671 DOI:10.1007/s11705-019-1815-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schrauben J N, Hayoun R, Valdez C N, Braten M, Fridley L, Mayer J M. Titanium and zinc oxide nanoparticles are proton-coupled electron transfer agents. Science, 2012, 336(6086): 1298–1301

[2]

Gratzel M. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344

[3]

Caravaca A, Daly H, Smith M, Mills A, Chansai S, Hardacre C. Continuous flow gas phase photoreforming of methanol at elevated reaction temperatures sensitised by Pt/TiO2. Reaction Chemistry & Engineering, 2016, 1(6): 649–657

[4]

Caravaca A, Jones W, Hardacre C, Bowker M H. Hydrogen production by the photocatalytic reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2016, 472

[5]

Palmisano L, Sclafani A. Thermodynamics and kinetics for heterogeneous photocatalytic processes. In: Schiavello M, ed. Heterogeneous Photocatalysis. New York: John Wiley & Sons, 1997, 109–132

[6]

Cong Y, Zhang J, Chen F, Anpo M. Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. Journal of Physical Chemistry C, 2007, 111(19): 6976–6982

[7]

Meng Q, Wang T, Liu E, Ma X, Ge Q, Gong J. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Physical Chemistry Chemical Physics, 2013, 15(24): 9549–9561

[8]

Lu J, Su F, Huang Z, Zhang C, Liu Y, Ma X, Gong J. N-Doped Ag/TiO2 hollow spheres for highly efficient photocatalysis under visible-light irradiation. RSC Advances, 2013, 3(3): 720–724

[9]

Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244

[10]

Pan H, Zhang Y W, Shenoy V B, Gao H. Effects of H-, N-, and (H, N)-doping on the photocatalytic activity of TiO2. Journal of Physical Chemistry C, 2011, 115(24): 12224–12231

[11]

Pelaez M, Nolan N, Pillai S, Seery M, Falaras P, Patrick A G, Jeremy S M, Hamiltone W J, Byrne J A, O’Shea K, A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012, 125: 331–349

[12]

Dozzi M V, Selli E. Doping TiO2 with p-block elements: Effects on photocatalytic activity. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2012, 14: 13–28

[13]

Kamat P V. TiO2 nanostructures: Recent physical chemistry advances. Journal of Physical Chemistry C, 2012, 116(22): 11849–11851

[14]

Li L, Yan J, Wang T, Zhao Z J, Zhang J, Gong J, Guan N. 10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nature Communications, 2015, 6(1): 5881

[15]

Ansari S A, Khan M M, Ansari M O, Cho M H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New Journal of Chemistry, 2016, 40(4): 3000–3009

[16]

Li L, Meng F, Hu X, Qiao L, Sun C Q, Tian H, Zheng W. TiO2 band restructuring by B and P dopants. PLoS One, 2016, 11(4): e0152726

[17]

Lu J, Zhang P, Li A, Su F, Wang T, Liu Y, Gong J. Mesoporous anatase TiO2 nanocups with plasmonic metal decoration for highly active visible-light photocatalysis. Chemical Communications (Cambridge), 2013, 49(52): 5817–5819

[18]

Tian Y, Tatsuma T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. Journal of the American Chemical Society, 2005, 127(20): 7632–7637

[19]

Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T. A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. Journal of the American Chemical Society, 2008, 130(5): 1676–1680

[20]

Lee I, Joo J B, Yin Y D, Zaera F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angewandte Chemie International Edition, 2011, 50(43): 10208–10211

[21]

Linic S, Christopher P, Ingram D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Materials, 2011, 10(12): 911–921

[22]

Zhang Q, Jin X, Xu Z, Zhang J, Rendón U F, Razzari L, Chaker M, Ma D. Plasmonic Au-loaded hierarchical hollow Porous TiO2 spheres: Synergistic catalysts for nitroaromatic reduction. Journal of Physical Chemistry Letters, 2018, 9(18): 5317–5326

[23]

Joo J B, Dahl M, Li N, Zaera F, Yin Y. Tailored synthesis of mesoporous TiO2 hollow nanostructures for catalytic applications. Energy & Environmental Science, 2013, 6(7): 2082–2092

[24]

Joo J B, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin Y. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity. Energy & Environmental Science, 2012, 5(4): 6321–6327

[25]

Dillon R J, Joo J B, Zaera F, Yin Y, Bardeen C J. Correlating the excited state relaxation dynamics as measured by photoluminescence and transient absorption with the photocatalytic activity of Au@TiO2 core-shell nanostructures. Physical Chemistry Chemical Physics, 2013, 15(5): 1488–1496

[26]

Lee Y J, Joo J B, Yin Y, Zaera F. Evaluation of the effective photoexcitation distances in the photocatalytic production of H2 from water using Au@void@TiO2 yolk-shell nanostructures. ACS Energy Letters, 2016, 1(1): 52–56

[27]

Lee I, Joo J B, Yin Y, Zaera F. Au@Void@TiO2 yolk-shell nanostructures as catalysts for the promotion of oxidation reactions at cryogenic temperatures. Surface Science, 2016, 648: 150–155

[28]

José-Yacamán M, Gutierrez-Wing C, Miki M, Yang D Q, Piyakis K N, Sacher E. Surface diffusion and coalescence of mobile metal nanoparticles. Journal of Physical Chemistry B, 2005, 109(19): 9703–9711

[29]

Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles. Langmuir, 1996, 12(18): 4329–4335

[30]

Bian Z, Tachikawa T, Zhang P, Fujitsuka M, Majima T. Au/TiO2 Superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. Journal of the American Chemical Society, 2014, 136(1): 458–465

[31]

Prikulis J, Hanarp P, Olofsson L, Sutherland D, Käll M. Optical spectroscopy of nanometric holes in thin gold films. Nano Letters, 2004, 4(6): 1003–1007

[32]

Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Janus Au-TiO2 photocatalysts with strong localization of plasmonic near-fields for efficient visible-light hydrogen generation. Advanced Materials, 2012, 24(17): 2310–2314

[33]

Wu X F, Song H Y, Yoon J M, Yu Y T, Chen Y F. Synthesis of core-shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir, 2009, 25(11): 6438–6447

AI Summary AI Mindmap
PDF (2213KB)

Supplementary files

FCE-18092-OF-LJ_suppl_1

4609

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/