REVIEW ARTICLE

Phosphorene: Current status, challenges and opportunities

  • Anandarup Goswami 1 ,
  • Manoj B. Gawande , 2
Expand
  • 1. Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research (VFSTR), Vadlamudi, Guntur-522213, Andhra Pradesh, India
  • 2. Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic

Received date: 18 May 2018

Accepted date: 22 Aug 2018

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

The field of 2-dimensional (2D) materials has witnessed a sharp growth since its inception and can majorly be attributed to the substantial technical and scientific developments, leading to significant improvements in their syntheses, characterization and applications. In the list of 2D materials, the relatively newer addition is phosphorene, which ideally consists of a single layer of black phosphorous. Keeping in mind the past, and ongoing research activities, this short account offers a brief overview of the present status and the associated challenges in the field of phosphorene-related research, with special emphasis on their syntheses, properties, applications and future opportunities.

Cite this article

Anandarup Goswami , Manoj B. Gawande . Phosphorene: Current status, challenges and opportunities[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 296 -309 . DOI: 10.1007/s11705-018-1783-y

Acknowledgement

MBG gratefully acknowledge the support by the Ministry of Education, Youth and Sports of the Czech Republic under project LO1305, and under the Operational Program Research, Development and Education—European Regional Development Fund (project no. CZ.02.1.01/0.0/0.0/16_019/0000754).
1
Bhanvase B A, Pawade V B. Chapter 15: Advanced nanomaterials for green energy: Current status and future perspectives. In: Nanomaterials for Green Energy. Amsterdam: Elsevier, 2018, 457–472

2
Child M, Koskinen O, Linnanen L, Breyer C. Sustainability guardrails for energy scenarios of the global energy transition. Renewable & Sustainable Energy Reviews, 2018, 91: 321–334

DOI

3
Feynman R P. There’s plenty of room at the bottom. Journal of Microelectromechanical Systems, 1992, 1(1): 60–66

DOI

4
Feynman R. Infinitesimal machinery. Journal of Microelectromechanical Systems, 1993, 2(1): 4–14

DOI

5
Drexler K E. Nanotechnology: From feynman to funding. Bulletin of Science, Technology & Society, 2004, 24(1): 21–27

DOI

6
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 2D materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30

DOI

7
Chhowalla M, Liu Z, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015, 44(9): 2584–2586

DOI

8
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539

DOI

9
Yang Z, Hao J. Recent progress in black phosphorusbased heterostructures for device applications. Small Methods, 2017, 2(2): 1700296

DOI

10
Bridgman P W. Two new modifications of phosphorus. Journal of the American Chemical Society, 1914, 36(7): 1344–1363

DOI

11
Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries. Advanced Materials, 2007, 19(18): 2465–2468

DOI

12
Khandelwal A, Mani K, Karigerasi M H, Lahiri I. Phosphorene—the two-dimensional black phosphorous: Properties, synthesis and applications. Materials Science and Engineering B, 2017, 221: 17–34

DOI

13
Akhtar M, Anderson G, Zhao R, Alruqi A, Mroczkowska J E, Sumanasekera G, Jasinski J B. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications, 2017, 1(1): 5

14
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033–4041

DOI

15
Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5(1): 8501

DOI

16
Wu M, Fu H, Zhou L, Yao K, Zeng X C. Nine new phosphorene polymorphs with non-honeycomb structures: A much extended family. Nano Letters, 2015, 15(5): 3557–3562

DOI

17
Brown A, Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 1965, 19(4): 684–685

DOI

18
Rodin A S, Carvalho A, Castro N A H. Strain-induced gap modification in black phosphorus. Physical Review Letters, 2014, 112(17): 176801

DOI

19
Appalakondaiah S, Vaitheeswaran G, Lebègue S, Christensen N E, Svane A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Physical Review. B, 2012, 86(3): 035105

DOI

20
Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes Rafael G, Gemming T, Liu Z, Rummeli M H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2017, 8(8): 1702093

DOI

21
Wu R J, Topsakal M, Low T, Robbins M C, Haratipour N, Jeong J S, Wentzcovitch R M, Koester S J, Mkhoyan K A. Atomic and electronic structure of exfoliated black phosphorus. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2015, 33(6): 060604

DOI

22
Feng X, Binghui G, Jing C, Arokia N, Linhuo L X, Hongyu M, Huihua M, Chongyang Z, Weiwei X, Zhengrui L, Scalable shear-exfoliation of high-quality phosphorene nanoflakes with reliable electrochemical cycleability in nano batteries. 2D Materials, 2016, 3(2): 025005

23
Gan Z X, Sun L L, Wu X L, Meng M, Shen J C, Chu P K. Tunable photoluminescence from sheet-like black phosphorus crystal by electrochemical oxidation. Applied Physics Letters, 2015, 107(2): 021901

DOI

24
Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu P K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530

DOI

25
Kang J S, Ke M, Hu Y. Ionic intercalation in two-dimensional van der waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Letters, 2017, 17(3): 1431–1438

DOI

26
Li L, Kim J, Jin C, Ye G J, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Direct observation of the layer-dependent electronic structure in phosphorene. Nature Nanotechnology, 2016, 12(1): 21–25

DOI

27
Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Lévesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature Materials, 2015, 14(8): 826–832

DOI

28
Ling X, Wang H, Huang S, Xia F, Dresselhaus M S. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4523–4530

DOI

29
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401

DOI

30
Rudenko A N, Yuan S, Katsnelson M I. Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations. Physical Review. B, 2015, 92(8): 085419

DOI

31
Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475

DOI

32
Wiktor J, Pasquarello A. Absolute deformation potentials of two-dimensional materials. Physical Review. B, 2016, 94(24): 245411

DOI

33
Nguyen C V, Ngoc H N, Duque C A, Quoc K D, Van H N, Van T L, Vinh P H. Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121(4): 045107

DOI

34
Çakır D, Sahin H, Peeters F M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Physical Review. B, 2014, 90(20): 205421

DOI

35
Yasaei P, Kumar B, Foroozan T, Wang C, Asadi M, Tuschel D, Indacochea J E, Klie R F, Salehi-Khojin A. Highquality black phosphorus atomic layers by liquid-phase exfoliation. Advanced Materials, 2015, 27(11): 1887–1892

DOI

36
Rahman M Z, Kwong C W, Davey K, Qiao S Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy & Environmental Science, 2016, 9(3): 709–728

DOI

37
Wu J, Mao N, Xie L, Xu H, Zhang J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy. Angewandte Chemie International Edition, 2015, 54(8): 2366–2369

DOI

38
Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F, Castro N A H. Tunable optical properties of multilayer black phosphorus thin films. Physical Review. B, 2014, 90(7): 075434

DOI

39
Corbrjdge D E C. Infrared analysis of phosphorus compounds. Journal of Applied Chemistry (London), 1956, 6(10): 456–465

DOI

40
Corbridge D E C, Lowe E J. The infra-red spectra of some inorganic phosphorus compounds. Journal of the Chemical Society (Resumed), 1954: 493–502

41
Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5(1): 4458

DOI

42
Chen S, Wang L, Wu Q, Li X, Zhao Y, Lai H, Yang L, Sun T, Li Y, Wang X, Hu Z. Advanced non-precious electrocatalyst of the mixed valence CoOx nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Science China. Chemistry, 2015, 58(1): 180–186

DOI

43
Late D J. Temperature dependent phonon shifts in few-layer black phosphorus. ACS Applied Materials & Interfaces, 2015, 7(10): 5857–5862

DOI

44
Andres C-G, Leonardo V, Elsa P, Joshua O I, Narasimha-Acharya K L, Sofya I B, Dirk J G, Michele B, Gary A S, Alvarez J V, Isolation and characterization of few-layer black phosphorus. 2D Materials, 2014, 1(2): 025001

45
Terrones H, Corro E D, Feng S, Poumirol J M, Rhodes D, Smirnov D, Pradhan N R, Lin Z, Nguyen M A T, Elías A L, New first order raman-active modes in few layered transition metal dichalcogenides. Scientific Reports, 2014, 4(1): 4215

DOI

46
Luo X, Lu X, Cong C, Yu T, Xiong Q, Ying Q S. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials—A general bond polarizability model. Scientific Reports, 2015, 5(1): 14565

DOI

47
Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V, Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311–1314

DOI

48
Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K, Tunable phonon polaritons in atomically thin van der waals crystals of boron nitride. Science, 2014, 343(6175): 1125–1129

DOI

49
Dong S, Zhang A, Liu K, Ji J, Ye Y G, Luo X G, Chen X H, Ma X, Jie Y, Chen C, Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus. Physical Review Letters, 2016, 116(8): 087401

DOI

50
Ling X, Liang L, Huang S, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Letters, 2015, 15(6): 4080–4088

DOI

51
Luo X, Lu X, Koon G K W, Castro N A H, Özyilmaz B, Xiong Q, Quek S Y. Large frequency change with thickness in interlayer breathing mode—significant interlayer interactions in few layer black phosphorus. Nano Letters, 2015, 15(6): 3931–3938

DOI

52
Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Letters, 2014, 14(12): 6964–6970

DOI

53
Doganov R A, O’Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T, Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere. Nature Communications, 2015, 6(1): 6647

DOI

54
Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T. Access and in situ growth of phosphorene-precursor black phosphorus. Journal of Crystal Growth, 2014, 405: 6–10

DOI

55
Lange S, Schmidt P, Au Nilges T. Sn3P7@black phosphorus: An easy access to black phosphorus. Inorganic Chemistry, 2007, 46(10): 4028–4035

DOI

56
Nilges T, Kersting M, Pfeifer T. A fast low-pressure transport route to large black phosphorus single crystals. Journal of Solid State Chemistry, 2008, 181(8): 1707–1711

DOI

57
Kou L, Chen C, Smith S C. Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 2015, 6(14): 2794–2805

DOI

58
Avouris P, Dimitrakopoulos C. Graphene: Synthesis and applications. Materials Today, 2012, 15(3): 86–97

DOI

59
Tian B, Tian B, Smith B, Scott M C, Lei Q, Hua R, Tian Y, Liu Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proceedings of the National Academy of Sciences, 2018, 115(17): 201800069

60
Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berrys phase in graphene. Nature, 2005, 438(7065): 201–204

DOI

61
Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715

DOI

62
Li H, Wu J, Yin Z, Zhang H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research, 2014, 47(4): 1067–1075

DOI

63
Zhang K, Feng Y, Wang F, Yang Z, Wang J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(46): 11992–12022

DOI

64
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014, 9(5): 372–377

DOI

65
Kang J, Wood J D, Wells S A, Lee J H, Liu X, Chen K S, Hersam M C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9(4): 3596–3604

DOI

66
Chen L, Zhou G, Liu Z, Ma X, Chen J, Zhang Z, Ma X, Li F, Cheng H M, Ren W. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Advanced Materials, 2015, 28(3): 510–517

DOI

67
Joensen P, Frindt R F, Morrison S R. Single-layer MoS2. Materials Research Bulletin, 1986, 21(4): 457–461

DOI

68
Guo G C, Wang D, Wei X L, Zhang Q, Liu H, Lau W M, Liu L M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. Journal of Physical Chemistry Letters, 2015, 6(24): 5002–5008

DOI

69
Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Advanced Materials, 2013, 25(22): 3045–3049

DOI

70
Kang J, Wells S A, Wood J D, Lee J H, Liu X, Ryder C R, Zhu J, Guest J R, Husko C A, Hersam M C. Stable aqueous dispersions of optically and electronically active phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11688–11693

DOI

71
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5(1): 5678

DOI

72
Bozso F, Avouris P. Adsorption of phosphorus on Si(111): Structure and chemical reactivity. Physical Review. B, 1991, 43(2): 1847–1850

DOI

73
Niu T. New properties with old materials: Layered black phosphorous. Nano Today, 2017, 12: 7–9

DOI

74
Zeng J, Cui P, Zhang Z. Half layer by half layer growth of a blue phosphorene monolayer on a gan(001) substrate. Physical Review Letters, 2017, 118(4): 046101

DOI

75
Liu X, Wood J D, Chen K S, Cho E, Hersam M C. In situ thermal decomposition of exfoliated two-dimensional black phosphorus. Journal of Physical Chemistry Letters, 2015, 6(5): 773–778

DOI

76
Piro N A, Figueroa J S, McKellar J T, Cummins C C. Triple-bond reactivity of diphosphorus molecules. Science, 2006, 313(5791): 1276–1279

DOI

77
Presel F, Tache C A, Tetlow H, Curcio D, Lacovig P, Kantorovich L, Lizzit S, Baraldi A. Spectroscopic fingerprints of carbon monomers and dimers on ir(111): Experiment and theory. Journal of Physical Chemistry C, 2017, 121(21): 11335–11345

DOI

78
Xu L, Jin Y, Wu Z, Yuan Q, Jiang Z, Ma Y, Huang W. Transformation of carbon monomers and dimers to graphene islands on co(0001): Thermodynamics and kinetics. Journal of Physical Chemistry C, 2013, 117(6): 2952–2958

DOI

79
Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro N A H. Oxygen defects in phosphorene. Physical Review Letters, 2015, 114(4): 046801

DOI

80
Cai Y, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. Journal of Physical Chemistry C, 2015, 119(24): 13929–13936

DOI

81
Whittingham M S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271–4302

DOI

82
Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176

DOI

83
Jiang J, Dahn J R. Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 2004, 49(26): 4599–4604

DOI

84
Li W, Yang Y, Zhang G, Zhang Y W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Letters, 2015, 15(3): 1691–1697

DOI

85
Sun J, Zheng G, Lee H W, Liu N, Wang H, Yao H, Yang W, Cui Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Letters, 2014, 14(8): 4573–4580

DOI

86
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries. Chemical Reviews, 2014, 114(23): 11751–11787

DOI

87
Peng H J, Huang J Q, Cheng X B, Zhang Q. Lithium-sulfur batteries: Review on high loading and high energy lithium-sulfur batteries. Advanced Energy Materials, 2017, 7(24): 1770141

DOI

88
Fan X, Sun W, Meng F, Xing A, Liu J. Advanced chemical strategies for lithium-sulfur batteries: A review. Green Energy & Environment, 2018, 3(1): 2–19

DOI

89
Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale, 2016, 8(37): 16541–16588

DOI

90
Zhou G, Pei S, Li L, Wang D W, Wang S, Huang K, Yin L C, Li F, Cheng H M. A Graphene-pure sulfur sandwich structure for ultrafast, long life lithium-sulfur batteries. Advanced Materials, 2013, 26(4): 625–631

DOI

91
Zhang Y, Wang H, Luo Z, Tan H T, Li B, Sun S, Li Z, Zong Y, Xu Z, Yang Y, Khor K A, Yan Q. Lithium storage: An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016, 6(12): 1600453

DOI

92
Zhao J, Yang Y, Katiyar R S, Chen Z. Phosphorene as a promising anchoring material for lithium-sulfur batteries: A computational study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(16): 6124–6130

DOI

93
Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, Xiong F, Cui Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Advanced Materials, 2016, 28(44): 9797–9803

DOI

94
Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: Present and future. Chemical Society Reviews, 2017, 46(12): 3529–3614

DOI

95
Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nature Reviews. Materials, 2018, 3(4): 18013

DOI

96
Sun J, Lee H W, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015, 10(11): 980–985

DOI

97
Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. Journal of the American Chemical Society, 2017, 139(9): 3316–3319

DOI

98
Ren X, Lian P, Xie D, Yang Y, Mei Y, Huang X, Wang Z, Yin X. Properties, preparation and application of black phosphorus/phosphorene for energy storage: A review. Journal of Materials Science, 2017, 52(17): 10364–10386

DOI

99
Wang X, Chen Y, Schmidt O G, Yan C. Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45(5): 1308–1330

DOI

100
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854

DOI

101
Wu Z S, Parvez K, Feng X, Müllen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487

DOI

102
Chen X, Xu G, Ren X, Li Z, Qi X, Huang K, Zhang H, Huang Z, Zhong J. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(14): 6581–6588

DOI

103
Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1625–1636

DOI

104
Roige A, Ossó J O, Martín I, Voz C, Ortega P, López-González J M, Alcubilla R, Vega L F. Microscale characterization of surface recombination at the vicinity of laser-processed regions in c-Si solar cells. IEEE Journal of Photovoltaics, 2016, 6(2): 426–431

DOI

105
Chen Y J, Zhang M J, Yuan S, Qiu Y, Wang X B, Jiang X, Gao Z, Lin Y, Pan F. Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy. Nano Energy, 2017, 36: 303–312

DOI

106
Abdulrazzaq O A, Saini V, Bourdo S, Dervishi E, Biris A S. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Particulate Science and Technology, 2013, 31(5): 427–442

DOI

107
Yang S, Fu W, Zhang Z, Chen H, Li C Z. Recent advances in perovskite solar cells: Efficiency, stability and lead-free perovskite. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482

DOI

108
Gong J, Sumathy K, Qiao Q, Zhou Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable & Sustainable Energy Reviews, 2017, 68: 234–246

DOI

109
Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello M S. Black phosphorus terahertz photodetectors. Advanced Materials, 2015, 27(37): 5567–5572

DOI

110
Long G, Maryenko D, Shen J, Xu S, Hou J, Wu Z, Wong W K, Han T, Lin J, Cai Y, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Letters, 2016, 16(12): 7768–7773

DOI

111
Cui S, Pu H, Wells S A, Wen Z, Mao S, Chang J, Hersam M C, Chen J. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6(1): 8632

DOI

112
Cai Y, Zhang G, Zhang Y W. Layer-dependent band alignment and work function of few-layer phosphorene. Scientific Reports, 2014, 4(1): 6677

DOI

113
Lin S, Liu S, Yang Z, Li Y, Ng T W, Xu Z, Bao Q, Hao J, Lee C S, Surya C, Solution—processable ultrathin black phosphorus as an effective electron transport layer in organic photovoltaics. Advanced Functional Materials, 2015, 26(6): 864–871

DOI

114
Chen W, Li K, Wang Y, Feng X, Liao Z, Su Q, Lin X, He Z. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. Journal of Physical Chemistry Letters, 2017, 8(3): 591–598

DOI

115
Buscema M, Groenendijk D J, Steele G A, van der Zant H S J, Castellanos-Gomez A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Communications, 2014, 5(1): 4651

DOI

116
Dai J, Zeng X C. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 2014, 5(7): 1289–1293

DOI

117
Kim D R, Lee C H, Rao P M, Cho I S, Zheng X. Hybrid Si microwire and planar solar cells: Passivation and characterization. Nano Letters, 2011, 11(7): 2704–2708

DOI

118
Batmunkh M, Bat-Erdene M, Shapter J G. Phosphorene and phosphorene based materials—prospects for future applications. Advanced Materials, 2016, 28(39): 8586–8617

DOI

119
Kim W, McClure B A, Edri E, Frei H. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45(11): 3221–3243

DOI

120
Liao P, Carter E A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews, 2013, 42(6): 2401–2422

DOI

121
Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655–2661

DOI

122
Ni M, Leung M K H, Leung D Y C, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425

DOI

123
Zhu X, Zhang T, Sun Z, Chen H, Guan J, Chen X, Ji H, Du P, Yang S. Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Advanced Materials, 2017, 29(17): 1605776

DOI

124
Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909

DOI

125
Zhu M, Cai X, Fujitsuka M, Zhang J, Majima T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angewandte Chemie International Edition, 2017, 56(8): 2064–2068

DOI

126
Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. Directly converting CO2 into a gasoline fuel. Nature Communications, 2017, 8: 15174

DOI

127
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408

DOI

128
Tran P D, Wong L H, Barber J, Loo J S C. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 2012, 5(3): 5902–5918

DOI

129
Zhang X, Zhang Z, Li J, Zhao X, Wu D, Zhou Z. Ti2CO2 MXene: A highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(25): 12899–12903

DOI

130
Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO reduction in ionic liquid. Science, 2016, 353(6298): 467–470

DOI

131
Liang Y T, Vijayan B K, Gray K A, Hersam M C. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Letters, 2011, 11(7): 2865–2870

DOI

132
Yuan Y P, Cao S W, Liao Y S, Yin L S, Xue C. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Applied Catalysis B: Environmental, 2013, 140-141: 164–168

DOI

133
Shen Z, Sun S, Wang W, Liu J, Liu Z, Yu J C. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3285–3288

DOI

134
Ito J I, Nishiyama H. Recent topics of transfer hydrogenation. Tetrahedron Letters, 2014, 55(20): 3133–3146

DOI

135
Zhao J, Liu X, Chen Z. Frustrated Lewis pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catalysis, 2017, 7(1): 766–771

DOI

136
Caporali M, Serrano-Ruiz M, Telesio F, Heun S, Nicotra G, Spinella C, Peruzzini M. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chemical Communications, 2017, 53(79): 10946–10949

DOI

137
Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599

DOI

138
Bhatkhande D S, Pangarkar V G, Beenackers A C M. Photocatalytic degradation for environmental applications: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 77(1): 102–116

DOI

139
Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. Journal of the American Chemical Society, 2015, 137(35): 11376–11382

DOI

140
Jiang Q, Xu L, Chen N, Zhang H, Dai L, Wang S. facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angewandte Chemie International Edition, 2016, 55(44): 13849–13853

DOI

141
Ren X, Zhou J, Qi X, Liu Y, Huang Z, Li Z, Ge Y, Dhanabalan S C, Ponraj J S, Wang S, Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction. Advanced Energy Materials, 2017, 7(19): 1700396

DOI

142
Nielsch K, Bachmann J, Kimling J, Böttner H. Thermoelectric nanostructures: From physical model systems towards nanograined composites. Advanced Energy Materials, 2011, 1(5): 713–731

DOI

143
Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J, Sánchez C. Thermoelectric power of bulk black-phosphorus. Applied Physics Letters, 2015, 106(2): 022102

DOI

144
Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung C H, Suslu A, Chen Y, Ko C, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015, 6(1): 8573

DOI

145
Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Scientific Reports, 2015, 5(1): 9961

DOI

146
Kuang A, Kuang M, Yuan H, Wang G, Chen H, Yang X. Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Applied Surface Science, 2017, 410: 505–512

DOI

147
Yu Z G, Zhang Y W, Yakobson B I. Phosphorene-based nanogenerator powered by cyclic molecular doping. Nano Energy, 2016, 23: 34–39

DOI

148
Irshad R, Tahir K, Li B, Sher Z, Ali J, Nazir S. A revival of 2D materials, phosphorene: Its application as sensors. Journal of Industrial and Engineering Chemistry, 2018, 64(25): 60–69

DOI

Outlines

/