Frontiers of Chemical Science and Engineering >
Phosphorene: Current status, challenges and opportunities
Received date: 18 May 2018
Accepted date: 22 Aug 2018
Published date: 15 Jun 2019
Copyright
The field of 2-dimensional (2D) materials has witnessed a sharp growth since its inception and can majorly be attributed to the substantial technical and scientific developments, leading to significant improvements in their syntheses, characterization and applications. In the list of 2D materials, the relatively newer addition is phosphorene, which ideally consists of a single layer of black phosphorous. Keeping in mind the past, and ongoing research activities, this short account offers a brief overview of the present status and the associated challenges in the field of phosphorene-related research, with special emphasis on their syntheses, properties, applications and future opportunities.
Anandarup Goswami , Manoj B. Gawande . Phosphorene: Current status, challenges and opportunities[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 296 -309 . DOI: 10.1007/s11705-018-1783-y
1 |
Bhanvase B A, Pawade V B. Chapter 15: Advanced nanomaterials for green energy: Current status and future perspectives. In: Nanomaterials for Green Energy. Amsterdam: Elsevier, 2018, 457–472
|
2 |
Child M, Koskinen O, Linnanen L, Breyer C. Sustainability guardrails for energy scenarios of the global energy transition. Renewable & Sustainable Energy Reviews, 2018, 91: 321–334
|
3 |
Feynman R P. There’s plenty of room at the bottom. Journal of Microelectromechanical Systems, 1992, 1(1): 60–66
|
4 |
Feynman R. Infinitesimal machinery. Journal of Microelectromechanical Systems, 1993, 2(1): 4–14
|
5 |
Drexler K E. Nanotechnology: From feynman to funding. Bulletin of Science, Technology & Society, 2004, 24(1): 21–27
|
6 |
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 2D materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30
|
7 |
Chhowalla M, Liu Z, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015, 44(9): 2584–2586
|
8 |
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539
|
9 |
Yang Z, Hao J. Recent progress in black phosphorusbased heterostructures for device applications. Small Methods, 2017, 2(2): 1700296
|
10 |
Bridgman P W. Two new modifications of phosphorus. Journal of the American Chemical Society, 1914, 36(7): 1344–1363
|
11 |
Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries. Advanced Materials, 2007, 19(18): 2465–2468
|
12 |
Khandelwal A, Mani K, Karigerasi M H, Lahiri I. Phosphorene—the two-dimensional black phosphorous: Properties, synthesis and applications. Materials Science and Engineering B, 2017, 221: 17–34
|
13 |
Akhtar M, Anderson G, Zhao R, Alruqi A, Mroczkowska J E, Sumanasekera G, Jasinski J B. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications, 2017, 1(1): 5
|
14 |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033–4041
|
15 |
Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5(1): 8501
|
16 |
Wu M, Fu H, Zhou L, Yao K, Zeng X C. Nine new phosphorene polymorphs with non-honeycomb structures: A much extended family. Nano Letters, 2015, 15(5): 3557–3562
|
17 |
Brown A, Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 1965, 19(4): 684–685
|
18 |
Rodin A S, Carvalho A, Castro N A H. Strain-induced gap modification in black phosphorus. Physical Review Letters, 2014, 112(17): 176801
|
19 |
Appalakondaiah S, Vaitheeswaran G, Lebègue S, Christensen N E, Svane A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Physical Review. B, 2012, 86(3): 035105
|
20 |
Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes Rafael G, Gemming T, Liu Z, Rummeli M H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2017, 8(8): 1702093
|
21 |
Wu R J, Topsakal M, Low T, Robbins M C, Haratipour N, Jeong J S, Wentzcovitch R M, Koester S J, Mkhoyan K A. Atomic and electronic structure of exfoliated black phosphorus. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2015, 33(6): 060604
|
22 |
Feng X, Binghui G, Jing C, Arokia N, Linhuo L X, Hongyu M, Huihua M, Chongyang Z, Weiwei X, Zhengrui L,
|
23 |
Gan Z X, Sun L L, Wu X L, Meng M, Shen J C, Chu P K. Tunable photoluminescence from sheet-like black phosphorus crystal by electrochemical oxidation. Applied Physics Letters, 2015, 107(2): 021901
|
24 |
Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu P K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530
|
25 |
Kang J S, Ke M, Hu Y. Ionic intercalation in two-dimensional van der waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Letters, 2017, 17(3): 1431–1438
|
26 |
Li L, Kim J, Jin C, Ye G J, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z,
|
27 |
Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Lévesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature Materials, 2015, 14(8): 826–832
|
28 |
Ling X, Wang H, Huang S, Xia F, Dresselhaus M S. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4523–4530
|
29 |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401
|
30 |
Rudenko A N, Yuan S, Katsnelson M I. Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations. Physical Review. B, 2015, 92(8): 085419
|
31 |
Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475
|
32 |
Wiktor J, Pasquarello A. Absolute deformation potentials of two-dimensional materials. Physical Review. B, 2016, 94(24): 245411
|
33 |
Nguyen C V, Ngoc H N, Duque C A, Quoc K D, Van H N, Van T L, Vinh P H. Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121(4): 045107
|
34 |
Çakır D, Sahin H, Peeters F M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Physical Review. B, 2014, 90(20): 205421
|
35 |
Yasaei P, Kumar B, Foroozan T, Wang C, Asadi M, Tuschel D, Indacochea J E, Klie R F, Salehi-Khojin A. Highquality black phosphorus atomic layers by liquid-phase exfoliation. Advanced Materials, 2015, 27(11): 1887–1892
|
36 |
Rahman M Z, Kwong C W, Davey K, Qiao S Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy & Environmental Science, 2016, 9(3): 709–728
|
37 |
Wu J, Mao N, Xie L, Xu H, Zhang J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy. Angewandte Chemie International Edition, 2015, 54(8): 2366–2369
|
38 |
Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F, Castro N A H. Tunable optical properties of multilayer black phosphorus thin films. Physical Review. B, 2014, 90(7): 075434
|
39 |
Corbrjdge D E C. Infrared analysis of phosphorus compounds. Journal of Applied Chemistry (London), 1956, 6(10): 456–465
|
40 |
Corbridge D E C, Lowe E J. The infra-red spectra of some inorganic phosphorus compounds. Journal of the Chemical Society (Resumed), 1954: 493–502
|
41 |
Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5(1): 4458
|
42 |
Chen S, Wang L, Wu Q, Li X, Zhao Y, Lai H, Yang L, Sun T, Li Y, Wang X, Hu Z. Advanced non-precious electrocatalyst of the mixed valence CoOx nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Science China. Chemistry, 2015, 58(1): 180–186
|
43 |
Late D J. Temperature dependent phonon shifts in few-layer black phosphorus. ACS Applied Materials & Interfaces, 2015, 7(10): 5857–5862
|
44 |
Andres C-G, Leonardo V, Elsa P, Joshua O I, Narasimha-Acharya K L, Sofya I B, Dirk J G, Michele B, Gary A S, Alvarez J V,
|
45 |
Terrones H, Corro E D, Feng S, Poumirol J M, Rhodes D, Smirnov D, Pradhan N R, Lin Z, Nguyen M A T, Elías A L,
|
46 |
Luo X, Lu X, Cong C, Yu T, Xiong Q, Ying Q S. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials—A general bond polarizability model. Scientific Reports, 2015, 5(1): 14565
|
47 |
Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V,
|
48 |
Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K,
|
49 |
Dong S, Zhang A, Liu K, Ji J, Ye Y G, Luo X G, Chen X H, Ma X, Jie Y, Chen C,
|
50 |
Ling X, Liang L, Huang S, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Letters, 2015, 15(6): 4080–4088
|
51 |
Luo X, Lu X, Koon G K W, Castro N A H, Özyilmaz B, Xiong Q, Quek S Y. Large frequency change with thickness in interlayer breathing mode—significant interlayer interactions in few layer black phosphorus. Nano Letters, 2015, 15(6): 3931–3938
|
52 |
Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Letters, 2014, 14(12): 6964–6970
|
53 |
Doganov R A, O’Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T,
|
54 |
Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T. Access and in situ growth of phosphorene-precursor black phosphorus. Journal of Crystal Growth, 2014, 405: 6–10
|
55 |
Lange S, Schmidt P, Au Nilges T. Sn3P7@black phosphorus: An easy access to black phosphorus. Inorganic Chemistry, 2007, 46(10): 4028–4035
|
56 |
Nilges T, Kersting M, Pfeifer T. A fast low-pressure transport route to large black phosphorus single crystals. Journal of Solid State Chemistry, 2008, 181(8): 1707–1711
|
57 |
Kou L, Chen C, Smith S C. Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 2015, 6(14): 2794–2805
|
58 |
Avouris P, Dimitrakopoulos C. Graphene: Synthesis and applications. Materials Today, 2012, 15(3): 86–97
|
59 |
Tian B, Tian B, Smith B, Scott M C, Lei Q, Hua R, Tian Y, Liu Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proceedings of the National Academy of Sciences, 2018, 115(17): 201800069
|
60 |
Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berrys phase in graphene. Nature, 2005, 438(7065): 201–204
|
61 |
Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715
|
62 |
Li H, Wu J, Yin Z, Zhang H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research, 2014, 47(4): 1067–1075
|
63 |
Zhang K, Feng Y, Wang F, Yang Z, Wang J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(46): 11992–12022
|
64 |
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014, 9(5): 372–377
|
65 |
Kang J, Wood J D, Wells S A, Lee J H, Liu X, Chen K S, Hersam M C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9(4): 3596–3604
|
66 |
Chen L, Zhou G, Liu Z, Ma X, Chen J, Zhang Z, Ma X, Li F, Cheng H M, Ren W. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Advanced Materials, 2015, 28(3): 510–517
|
67 |
Joensen P, Frindt R F, Morrison S R. Single-layer MoS2. Materials Research Bulletin, 1986, 21(4): 457–461
|
68 |
Guo G C, Wang D, Wei X L, Zhang Q, Liu H, Lau W M, Liu L M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. Journal of Physical Chemistry Letters, 2015, 6(24): 5002–5008
|
69 |
Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Advanced Materials, 2013, 25(22): 3045–3049
|
70 |
Kang J, Wells S A, Wood J D, Lee J H, Liu X, Ryder C R, Zhu J, Guest J R, Husko C A, Hersam M C. Stable aqueous dispersions of optically and electronically active phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11688–11693
|
71 |
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5(1): 5678
|
72 |
Bozso F, Avouris P. Adsorption of phosphorus on Si(111): Structure and chemical reactivity. Physical Review. B, 1991, 43(2): 1847–1850
|
73 |
Niu T. New properties with old materials: Layered black phosphorous. Nano Today, 2017, 12: 7–9
|
74 |
Zeng J, Cui P, Zhang Z. Half layer by half layer growth of a blue phosphorene monolayer on a gan(001) substrate. Physical Review Letters, 2017, 118(4): 046101
|
75 |
Liu X, Wood J D, Chen K S, Cho E, Hersam M C. In situ thermal decomposition of exfoliated two-dimensional black phosphorus. Journal of Physical Chemistry Letters, 2015, 6(5): 773–778
|
76 |
Piro N A, Figueroa J S, McKellar J T, Cummins C C. Triple-bond reactivity of diphosphorus molecules. Science, 2006, 313(5791): 1276–1279
|
77 |
Presel F, Tache C A, Tetlow H, Curcio D, Lacovig P, Kantorovich L, Lizzit S, Baraldi A. Spectroscopic fingerprints of carbon monomers and dimers on ir(111): Experiment and theory. Journal of Physical Chemistry C, 2017, 121(21): 11335–11345
|
78 |
Xu L, Jin Y, Wu Z, Yuan Q, Jiang Z, Ma Y, Huang W. Transformation of carbon monomers and dimers to graphene islands on co(0001): Thermodynamics and kinetics. Journal of Physical Chemistry C, 2013, 117(6): 2952–2958
|
79 |
Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro N A H. Oxygen defects in phosphorene. Physical Review Letters, 2015, 114(4): 046801
|
80 |
Cai Y, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. Journal of Physical Chemistry C, 2015, 119(24): 13929–13936
|
81 |
Whittingham M S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271–4302
|
82 |
Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
|
83 |
Jiang J, Dahn J R. Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 2004, 49(26): 4599–4604
|
84 |
Li W, Yang Y, Zhang G, Zhang Y W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Letters, 2015, 15(3): 1691–1697
|
85 |
Sun J, Zheng G, Lee H W, Liu N, Wang H, Yao H, Yang W, Cui Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Letters, 2014, 14(8): 4573–4580
|
86 |
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries. Chemical Reviews, 2014, 114(23): 11751–11787
|
87 |
Peng H J, Huang J Q, Cheng X B, Zhang Q. Lithium-sulfur batteries: Review on high loading and high energy lithium-sulfur batteries. Advanced Energy Materials, 2017, 7(24): 1770141
|
88 |
Fan X, Sun W, Meng F, Xing A, Liu J. Advanced chemical strategies for lithium-sulfur batteries: A review. Green Energy & Environment, 2018, 3(1): 2–19
|
89 |
Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale, 2016, 8(37): 16541–16588
|
90 |
Zhou G, Pei S, Li L, Wang D W, Wang S, Huang K, Yin L C, Li F, Cheng H M. A Graphene-pure sulfur sandwich structure for ultrafast, long life lithium-sulfur batteries. Advanced Materials, 2013, 26(4): 625–631
|
91 |
Zhang Y, Wang H, Luo Z, Tan H T, Li B, Sun S, Li Z, Zong Y, Xu Z, Yang Y, Khor K A, Yan Q. Lithium storage: An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016, 6(12): 1600453
|
92 |
Zhao J, Yang Y, Katiyar R S, Chen Z. Phosphorene as a promising anchoring material for lithium-sulfur batteries: A computational study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(16): 6124–6130
|
93 |
Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, Xiong F, Cui Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Advanced Materials, 2016, 28(44): 9797–9803
|
94 |
Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: Present and future. Chemical Society Reviews, 2017, 46(12): 3529–3614
|
95 |
Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nature Reviews. Materials, 2018, 3(4): 18013
|
96 |
Sun J, Lee H W, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015, 10(11): 980–985
|
97 |
Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. Journal of the American Chemical Society, 2017, 139(9): 3316–3319
|
98 |
Ren X, Lian P, Xie D, Yang Y, Mei Y, Huang X, Wang Z, Yin X. Properties, preparation and application of black phosphorus/phosphorene for energy storage: A review. Journal of Materials Science, 2017, 52(17): 10364–10386
|
99 |
Wang X, Chen Y, Schmidt O G, Yan C. Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45(5): 1308–1330
|
100 |
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854
|
101 |
Wu Z S, Parvez K, Feng X, Müllen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487
|
102 |
Chen X, Xu G, Ren X, Li Z, Qi X, Huang K, Zhang H, Huang Z, Zhong J. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(14): 6581–6588
|
103 |
Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1625–1636
|
104 |
Roige A, Ossó J O, Martín I, Voz C, Ortega P, López-González J M, Alcubilla R, Vega L F. Microscale characterization of surface recombination at the vicinity of laser-processed regions in c-Si solar cells. IEEE Journal of Photovoltaics, 2016, 6(2): 426–431
|
105 |
Chen Y J, Zhang M J, Yuan S, Qiu Y, Wang X B, Jiang X, Gao Z, Lin Y, Pan F. Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy. Nano Energy, 2017, 36: 303–312
|
106 |
Abdulrazzaq O A, Saini V, Bourdo S, Dervishi E, Biris A S. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Particulate Science and Technology, 2013, 31(5): 427–442
|
107 |
Yang S, Fu W, Zhang Z, Chen H, Li C Z. Recent advances in perovskite solar cells: Efficiency, stability and lead-free perovskite. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482
|
108 |
Gong J, Sumathy K, Qiao Q, Zhou Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable & Sustainable Energy Reviews, 2017, 68: 234–246
|
109 |
Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello M S. Black phosphorus terahertz photodetectors. Advanced Materials, 2015, 27(37): 5567–5572
|
110 |
Long G, Maryenko D, Shen J, Xu S, Hou J, Wu Z, Wong W K, Han T, Lin J, Cai Y, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Letters, 2016, 16(12): 7768–7773
|
111 |
Cui S, Pu H, Wells S A, Wen Z, Mao S, Chang J, Hersam M C, Chen J. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6(1): 8632
|
112 |
Cai Y, Zhang G, Zhang Y W. Layer-dependent band alignment and work function of few-layer phosphorene. Scientific Reports, 2014, 4(1): 6677
|
113 |
Lin S, Liu S, Yang Z, Li Y, Ng T W, Xu Z, Bao Q, Hao J, Lee C S, Surya C,
|
114 |
Chen W, Li K, Wang Y, Feng X, Liao Z, Su Q, Lin X, He Z. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. Journal of Physical Chemistry Letters, 2017, 8(3): 591–598
|
115 |
Buscema M, Groenendijk D J, Steele G A, van der Zant H S J, Castellanos-Gomez A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Communications, 2014, 5(1): 4651
|
116 |
Dai J, Zeng X C. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 2014, 5(7): 1289–1293
|
117 |
Kim D R, Lee C H, Rao P M, Cho I S, Zheng X. Hybrid Si microwire and planar solar cells: Passivation and characterization. Nano Letters, 2011, 11(7): 2704–2708
|
118 |
Batmunkh M, Bat-Erdene M, Shapter J G. Phosphorene and phosphorene based materials—prospects for future applications. Advanced Materials, 2016, 28(39): 8586–8617
|
119 |
Kim W, McClure B A, Edri E, Frei H. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45(11): 3221–3243
|
120 |
Liao P, Carter E A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews, 2013, 42(6): 2401–2422
|
121 |
Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655–2661
|
122 |
Ni M, Leung M K H, Leung D Y C, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425
|
123 |
Zhu X, Zhang T, Sun Z, Chen H, Guan J, Chen X, Ji H, Du P, Yang S. Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Advanced Materials, 2017, 29(17): 1605776
|
124 |
Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909
|
125 |
Zhu M, Cai X, Fujitsuka M, Zhang J, Majima T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angewandte Chemie International Edition, 2017, 56(8): 2064–2068
|
126 |
Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. Directly converting CO2 into a gasoline fuel. Nature Communications, 2017, 8: 15174
|
127 |
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408
|
128 |
Tran P D, Wong L H, Barber J, Loo J S C. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 2012, 5(3): 5902–5918
|
129 |
Zhang X, Zhang Z, Li J, Zhao X, Wu D, Zhou Z. Ti2CO2 MXene: A highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(25): 12899–12903
|
130 |
Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO reduction in ionic liquid. Science, 2016, 353(6298): 467–470
|
131 |
Liang Y T, Vijayan B K, Gray K A, Hersam M C. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Letters, 2011, 11(7): 2865–2870
|
132 |
Yuan Y P, Cao S W, Liao Y S, Yin L S, Xue C. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Applied Catalysis B: Environmental, 2013, 140-141: 164–168
|
133 |
Shen Z, Sun S, Wang W, Liu J, Liu Z, Yu J C. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3285–3288
|
134 |
Ito J I, Nishiyama H. Recent topics of transfer hydrogenation. Tetrahedron Letters, 2014, 55(20): 3133–3146
|
135 |
Zhao J, Liu X, Chen Z. Frustrated Lewis pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catalysis, 2017, 7(1): 766–771
|
136 |
Caporali M, Serrano-Ruiz M, Telesio F, Heun S, Nicotra G, Spinella C, Peruzzini M. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chemical Communications, 2017, 53(79): 10946–10949
|
137 |
Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599
|
138 |
Bhatkhande D S, Pangarkar V G, Beenackers A C M. Photocatalytic degradation for environmental applications: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 77(1): 102–116
|
139 |
Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. Journal of the American Chemical Society, 2015, 137(35): 11376–11382
|
140 |
Jiang Q, Xu L, Chen N, Zhang H, Dai L, Wang S. facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angewandte Chemie International Edition, 2016, 55(44): 13849–13853
|
141 |
Ren X, Zhou J, Qi X, Liu Y, Huang Z, Li Z, Ge Y, Dhanabalan S C, Ponraj J S, Wang S,
|
142 |
Nielsch K, Bachmann J, Kimling J, Böttner H. Thermoelectric nanostructures: From physical model systems towards nanograined composites. Advanced Energy Materials, 2011, 1(5): 713–731
|
143 |
Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J, Sánchez C. Thermoelectric power of bulk black-phosphorus. Applied Physics Letters, 2015, 106(2): 022102
|
144 |
Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung C H, Suslu A, Chen Y, Ko C, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015, 6(1): 8573
|
145 |
Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Scientific Reports, 2015, 5(1): 9961
|
146 |
Kuang A, Kuang M, Yuan H, Wang G, Chen H, Yang X. Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Applied Surface Science, 2017, 410: 505–512
|
147 |
Yu Z G, Zhang Y W, Yakobson B I. Phosphorene-based nanogenerator powered by cyclic molecular doping. Nano Energy, 2016, 23: 34–39
|
148 |
Irshad R, Tahir K, Li B, Sher Z, Ali J, Nazir S. A revival of 2D materials, phosphorene: Its application as sensors. Journal of Industrial and Engineering Chemistry, 2018, 64(25): 60–69
|
/
〈 | 〉 |