Phosphorene: Current status, challenges and opportunities
Anandarup Goswami, Manoj B. Gawande
Phosphorene: Current status, challenges and opportunities
The field of 2-dimensional (2D) materials has witnessed a sharp growth since its inception and can majorly be attributed to the substantial technical and scientific developments, leading to significant improvements in their syntheses, characterization and applications. In the list of 2D materials, the relatively newer addition is phosphorene, which ideally consists of a single layer of black phosphorous. Keeping in mind the past, and ongoing research activities, this short account offers a brief overview of the present status and the associated challenges in the field of phosphorene-related research, with special emphasis on their syntheses, properties, applications and future opportunities.
phosphorene / black phosphorous / anisotropy / single layer / thermoelectric / chemical vapor deposition / catalysis / battery / supercapacitor
[1] |
Bhanvase B A, Pawade V B. Chapter 15: Advanced nanomaterials for green energy: Current status and future perspectives. In: Nanomaterials for Green Energy. Amsterdam: Elsevier, 2018, 457–472
|
[2] |
Child M, Koskinen O, Linnanen L, Breyer C. Sustainability guardrails for energy scenarios of the global energy transition. Renewable & Sustainable Energy Reviews, 2018, 91: 321–334
CrossRef
Google scholar
|
[3] |
Feynman R P. There’s plenty of room at the bottom. Journal of Microelectromechanical Systems, 1992, 1(1): 60–66
CrossRef
Google scholar
|
[4] |
Feynman R. Infinitesimal machinery. Journal of Microelectromechanical Systems, 1993, 2(1): 4–14
CrossRef
Google scholar
|
[5] |
Drexler K E. Nanotechnology: From feynman to funding. Bulletin of Science, Technology & Society, 2004, 24(1): 21–27
CrossRef
Google scholar
|
[6] |
Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F. 2D materials: To graphene and beyond. Nanoscale, 2011, 3(1): 20–30
CrossRef
Google scholar
|
[7] |
Chhowalla M, Liu Z, Zhang H. Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chemical Society Reviews, 2015, 44(9): 2584–2586
CrossRef
Google scholar
|
[8] |
Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano, 2015, 9(12): 11509–11539
CrossRef
Google scholar
|
[9] |
Yang Z, Hao J. Recent progress in black phosphorusbased heterostructures for device applications. Small Methods, 2017, 2(2): 1700296
CrossRef
Google scholar
|
[10] |
Bridgman P W. Two new modifications of phosphorus. Journal of the American Chemical Society, 1914, 36(7): 1344–1363
CrossRef
Google scholar
|
[11] |
Park C M, Sohn H J. Black phosphorus and its composite for lithium rechargeable batteries. Advanced Materials, 2007, 19(18): 2465–2468
CrossRef
Google scholar
|
[12] |
Khandelwal A, Mani K, Karigerasi M H, Lahiri I. Phosphorene—the two-dimensional black phosphorous: Properties, synthesis and applications. Materials Science and Engineering B, 2017, 221: 17–34
CrossRef
Google scholar
|
[13] |
Akhtar M, Anderson G, Zhao R, Alruqi A, Mroczkowska J E, Sumanasekera G, Jasinski J B. Recent advances in synthesis, properties, and applications of phosphorene. npj 2D Materials and Applications, 2017, 1(1): 5
|
[14] |
Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D, Ye P D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033–4041
CrossRef
Google scholar
|
[15] |
Jain A, McGaughey A J H. Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Scientific Reports, 2015, 5(1): 8501
CrossRef
Google scholar
|
[16] |
Wu M, Fu H, Zhou L, Yao K, Zeng X C. Nine new phosphorene polymorphs with non-honeycomb structures: A much extended family. Nano Letters, 2015, 15(5): 3557–3562
CrossRef
Google scholar
|
[17] |
Brown A, Rundqvist S. Refinement of the crystal structure of black phosphorus. Acta Crystallographica, 1965, 19(4): 684–685
CrossRef
Google scholar
|
[18] |
Rodin A S, Carvalho A, Castro N A H. Strain-induced gap modification in black phosphorus. Physical Review Letters, 2014, 112(17): 176801
CrossRef
Google scholar
|
[19] |
Appalakondaiah S, Vaitheeswaran G, Lebègue S, Christensen N E, Svane A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Physical Review. B, 2012, 86(3): 035105
CrossRef
Google scholar
|
[20] |
Pang J, Bachmatiuk A, Yin Y, Trzebicka B, Zhao L, Fu L, Mendes Rafael G, Gemming T, Liu Z, Rummeli M H. Applications of phosphorene and black phosphorus in energy conversion and storage devices. Advanced Energy Materials, 2017, 8(8): 1702093
CrossRef
Google scholar
|
[21] |
Wu R J, Topsakal M, Low T, Robbins M C, Haratipour N, Jeong J S, Wentzcovitch R M, Koester S J, Mkhoyan K A. Atomic and electronic structure of exfoliated black phosphorus. Journal of Vacuum Science & Technology. A, Vacuum, Surfaces, and Films, 2015, 33(6): 060604
CrossRef
Google scholar
|
[22] |
Feng X, Binghui G, Jing C, Arokia N, Linhuo L X, Hongyu M, Huihua M, Chongyang Z, Weiwei X, Zhengrui L,
|
[23] |
Gan Z X, Sun L L, Wu X L, Meng M, Shen J C, Chu P K. Tunable photoluminescence from sheet-like black phosphorus crystal by electrochemical oxidation. Applied Physics Letters, 2015, 107(2): 021901
CrossRef
Google scholar
|
[24] |
Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu P K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530
CrossRef
Google scholar
|
[25] |
Kang J S, Ke M, Hu Y. Ionic intercalation in two-dimensional van der waals materials: In situ characterization and electrochemical control of the anisotropic thermal conductivity of black phosphorus. Nano Letters, 2017, 17(3): 1431–1438
CrossRef
Google scholar
|
[26] |
Li L, Kim J, Jin C, Ye G J, Qiu D Y, da Jornada F H, Shi Z, Chen L, Zhang Z,
CrossRef
Google scholar
|
[27] |
Favron A, Gaufrès E, Fossard F, Phaneuf-L’Heureux A L, Tang N Y W, Lévesque P L, Loiseau A, Leonelli R, Francoeur S, Martel R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature Materials, 2015, 14(8): 826–832
CrossRef
Google scholar
|
[28] |
Ling X, Wang H, Huang S, Xia F, Dresselhaus M S. The renaissance of black phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(15): 4523–4530
CrossRef
Google scholar
|
[29] |
Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97(18): 187401
CrossRef
Google scholar
|
[30] |
Rudenko A N, Yuan S, Katsnelson M I. Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations. Physical Review. B, 2015, 92(8): 085419
CrossRef
Google scholar
|
[31] |
Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475
CrossRef
Google scholar
|
[32] |
Wiktor J, Pasquarello A. Absolute deformation potentials of two-dimensional materials. Physical Review. B, 2016, 94(24): 245411
CrossRef
Google scholar
|
[33] |
Nguyen C V, Ngoc H N, Duque C A, Quoc K D, Van H N, Van T L, Vinh P H. Linear and nonlinear magneto-optical properties of monolayer phosphorene. Journal of Applied Physics, 2017, 121(4): 045107
CrossRef
Google scholar
|
[34] |
Çakır D, Sahin H, Peeters F M. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Physical Review. B, 2014, 90(20): 205421
CrossRef
Google scholar
|
[35] |
Yasaei P, Kumar B, Foroozan T, Wang C, Asadi M, Tuschel D, Indacochea J E, Klie R F, Salehi-Khojin A. Highquality black phosphorus atomic layers by liquid-phase exfoliation. Advanced Materials, 2015, 27(11): 1887–1892
CrossRef
Google scholar
|
[36] |
Rahman M Z, Kwong C W, Davey K, Qiao S Z. 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications. Energy & Environmental Science, 2016, 9(3): 709–728
CrossRef
Google scholar
|
[37] |
Wu J, Mao N, Xie L, Xu H, Zhang J. Identifying the crystalline orientation of black phosphorus using angle-resolved polarized raman spectroscopy. Angewandte Chemie International Edition, 2015, 54(8): 2366–2369
CrossRef
Google scholar
|
[38] |
Low T, Rodin A S, Carvalho A, Jiang Y, Wang H, Xia F, Castro N A H. Tunable optical properties of multilayer black phosphorus thin films. Physical Review. B, 2014, 90(7): 075434
CrossRef
Google scholar
|
[39] |
Corbrjdge D E C. Infrared analysis of phosphorus compounds. Journal of Applied Chemistry (London), 1956, 6(10): 456–465
CrossRef
Google scholar
|
[40] |
Corbridge D E C, Lowe E J. The infra-red spectra of some inorganic phosphorus compounds. Journal of the Chemical Society (Resumed), 1954: 493–502
|
[41] |
Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5(1): 4458
CrossRef
Google scholar
|
[42] |
Chen S, Wang L, Wu Q, Li X, Zhao Y, Lai H, Yang L, Sun T, Li Y, Wang X, Hu Z. Advanced non-precious electrocatalyst of the mixed valence CoOx nanocrystals supported on N-doped carbon nanocages for oxygen reduction. Science China. Chemistry, 2015, 58(1): 180–186
CrossRef
Google scholar
|
[43] |
Late D J. Temperature dependent phonon shifts in few-layer black phosphorus. ACS Applied Materials & Interfaces, 2015, 7(10): 5857–5862
CrossRef
Google scholar
|
[44] |
Andres C-G, Leonardo V, Elsa P, Joshua O I, Narasimha-Acharya K L, Sofya I B, Dirk J G, Michele B, Gary A S, Alvarez J V,
|
[45] |
Terrones H, Corro E D, Feng S, Poumirol J M, Rhodes D, Smirnov D, Pradhan N R, Lin Z, Nguyen M A T, Elías A L,
CrossRef
Google scholar
|
[46] |
Luo X, Lu X, Cong C, Yu T, Xiong Q, Ying Q S. Stacking sequence determines Raman intensities of observed interlayer shear modes in 2D layered materials—A general bond polarizability model. Scientific Reports, 2015, 5(1): 14565
CrossRef
Google scholar
|
[47] |
Britnell L, Ribeiro R M, Eckmann A, Jalil R, Belle B D, Mishchenko A, Kim Y J, Gorbachev R V, Georgiou T, Morozov S V,
CrossRef
Google scholar
|
[48] |
Dai S, Fei Z, Ma Q, Rodin A S, Wagner M, McLeod A S, Liu M K, Gannett W, Regan W, Watanabe K,
CrossRef
Google scholar
|
[49] |
Dong S, Zhang A, Liu K, Ji J, Ye Y G, Luo X G, Chen X H, Ma X, Jie Y, Chen C,
CrossRef
Google scholar
|
[50] |
Ling X, Liang L, Huang S, Puretzky A A, Geohegan D B, Sumpter B G, Kong J, Meunier V, Dresselhaus M S. Low-frequency interlayer breathing modes in few-layer black phosphorus. Nano Letters, 2015, 15(6): 4080–4088
CrossRef
Google scholar
|
[51] |
Luo X, Lu X, Koon G K W, Castro N A H, Özyilmaz B, Xiong Q, Quek S Y. Large frequency change with thickness in interlayer breathing mode—significant interlayer interactions in few layer black phosphorus. Nano Letters, 2015, 15(6): 3931–3938
CrossRef
Google scholar
|
[52] |
Wood J D, Wells S A, Jariwala D, Chen K S, Cho E, Sangwan V K, Liu X, Lauhon L J, Marks T J, Hersam M C. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Letters, 2014, 14(12): 6964–6970
CrossRef
Google scholar
|
[53] |
Doganov R A, O’Farrell E C T, Koenig S P, Yeo Y, Ziletti A, Carvalho A, Campbell D K, Coker D F, Watanabe K, Taniguchi T,
CrossRef
Google scholar
|
[54] |
Köpf M, Eckstein N, Pfister D, Grotz C, Krüger I, Greiwe M, Hansen T, Kohlmann H, Nilges T. Access and in situ growth of phosphorene-precursor black phosphorus. Journal of Crystal Growth, 2014, 405: 6–10
CrossRef
Google scholar
|
[55] |
Lange S, Schmidt P, Au Nilges T. Sn3P7@black phosphorus: An easy access to black phosphorus. Inorganic Chemistry, 2007, 46(10): 4028–4035
CrossRef
Google scholar
|
[56] |
Nilges T, Kersting M, Pfeifer T. A fast low-pressure transport route to large black phosphorus single crystals. Journal of Solid State Chemistry, 2008, 181(8): 1707–1711
CrossRef
Google scholar
|
[57] |
Kou L, Chen C, Smith S C. Phosphorene: Fabrication, properties, and applications. Journal of Physical Chemistry Letters, 2015, 6(14): 2794–2805
CrossRef
Google scholar
|
[58] |
Avouris P, Dimitrakopoulos C. Graphene: Synthesis and applications. Materials Today, 2012, 15(3): 86–97
CrossRef
Google scholar
|
[59] |
Tian B, Tian B, Smith B, Scott M C, Lei Q, Hua R, Tian Y, Liu Y. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution. Proceedings of the National Academy of Sciences, 2018, 115(17): 201800069
|
[60] |
Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berrys phase in graphene. Nature, 2005, 438(7065): 201–204
CrossRef
Google scholar
|
[61] |
Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(22): 11700–11715
CrossRef
Google scholar
|
[62] |
Li H, Wu J, Yin Z, Zhang H. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 Nanosheets. Accounts of Chemical Research, 2014, 47(4): 1067–1075
CrossRef
Google scholar
|
[63] |
Zhang K, Feng Y, Wang F, Yang Z, Wang J. Two dimensional hexagonal boron nitride (2D-hBN): Synthesis, properties and applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(46): 11992–12022
CrossRef
Google scholar
|
[64] |
Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y. Black phosphorus field-effect transistors. Nature Nanotechnology, 2014, 9(5): 372–377
CrossRef
Google scholar
|
[65] |
Kang J, Wood J D, Wells S A, Lee J H, Liu X, Chen K S, Hersam M C. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano, 2015, 9(4): 3596–3604
CrossRef
Google scholar
|
[66] |
Chen L, Zhou G, Liu Z, Ma X, Chen J, Zhang Z, Ma X, Li F, Cheng H M, Ren W. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Advanced Materials, 2015, 28(3): 510–517
CrossRef
Google scholar
|
[67] |
Joensen P, Frindt R F, Morrison S R. Single-layer MoS2. Materials Research Bulletin, 1986, 21(4): 457–461
CrossRef
Google scholar
|
[68] |
Guo G C, Wang D, Wei X L, Zhang Q, Liu H, Lau W M, Liu L M. First-principles study of phosphorene and graphene heterostructure as anode materials for rechargeable Li batteries. Journal of Physical Chemistry Letters, 2015, 6(24): 5002–5008
CrossRef
Google scholar
|
[69] |
Kim Y, Park Y, Choi A, Choi N S, Kim J, Lee J, Ryu J H, Oh S M, Lee K T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Advanced Materials, 2013, 25(22): 3045–3049
CrossRef
Google scholar
|
[70] |
Kang J, Wells S A, Wood J D, Lee J H, Liu X, Ryder C R, Zhu J, Guest J R, Husko C A, Hersam M C. Stable aqueous dispersions of optically and electronically active phosphorene. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(42): 11688–11693
CrossRef
Google scholar
|
[71] |
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nature Communications, 2014, 5(1): 5678
CrossRef
Google scholar
|
[72] |
Bozso F, Avouris P. Adsorption of phosphorus on Si(111): Structure and chemical reactivity. Physical Review. B, 1991, 43(2): 1847–1850
CrossRef
Google scholar
|
[73] |
Niu T. New properties with old materials: Layered black phosphorous. Nano Today, 2017, 12: 7–9
CrossRef
Google scholar
|
[74] |
Zeng J, Cui P, Zhang Z. Half layer by half layer growth of a blue phosphorene monolayer on a gan(001) substrate. Physical Review Letters, 2017, 118(4): 046101
CrossRef
Google scholar
|
[75] |
Liu X, Wood J D, Chen K S, Cho E, Hersam M C. In situ thermal decomposition of exfoliated two-dimensional black phosphorus. Journal of Physical Chemistry Letters, 2015, 6(5): 773–778
CrossRef
Google scholar
|
[76] |
Piro N A, Figueroa J S, McKellar J T, Cummins C C. Triple-bond reactivity of diphosphorus molecules. Science, 2006, 313(5791): 1276–1279
CrossRef
Google scholar
|
[77] |
Presel F, Tache C A, Tetlow H, Curcio D, Lacovig P, Kantorovich L, Lizzit S, Baraldi A. Spectroscopic fingerprints of carbon monomers and dimers on ir(111): Experiment and theory. Journal of Physical Chemistry C, 2017, 121(21): 11335–11345
CrossRef
Google scholar
|
[78] |
Xu L, Jin Y, Wu Z, Yuan Q, Jiang Z, Ma Y, Huang W. Transformation of carbon monomers and dimers to graphene islands on co(0001): Thermodynamics and kinetics. Journal of Physical Chemistry C, 2013, 117(6): 2952–2958
CrossRef
Google scholar
|
[79] |
Ziletti A, Carvalho A, Campbell D K, Coker D F, Castro N A H. Oxygen defects in phosphorene. Physical Review Letters, 2015, 114(4): 046801
CrossRef
Google scholar
|
[80] |
Cai Y, Zhang G, Zhang Y W. Electronic properties of phosphorene/graphene and phosphorene/hexagonal boron nitride heterostructures. Journal of Physical Chemistry C, 2015, 119(24): 13929–13936
CrossRef
Google scholar
|
[81] |
Whittingham M S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271–4302
CrossRef
Google scholar
|
[82] |
Goodenough J B, Park K S. The Li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
CrossRef
Google scholar
|
[83] |
Jiang J, Dahn J R. Effects of solvents and salts on the thermal stability of LiC6. Electrochimica Acta, 2004, 49(26): 4599–4604
CrossRef
Google scholar
|
[84] |
Li W, Yang Y, Zhang G, Zhang Y W. Ultrafast and directional diffusion of lithium in phosphorene for high-performance lithium-ion battery. Nano Letters, 2015, 15(3): 1691–1697
CrossRef
Google scholar
|
[85] |
Sun J, Zheng G, Lee H W, Liu N, Wang H, Yao H, Yang W, Cui Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Letters, 2014, 14(8): 4573–4580
CrossRef
Google scholar
|
[86] |
Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries. Chemical Reviews, 2014, 114(23): 11751–11787
CrossRef
Google scholar
|
[87] |
Peng H J, Huang J Q, Cheng X B, Zhang Q. Lithium-sulfur batteries: Review on high loading and high energy lithium-sulfur batteries. Advanced Energy Materials, 2017, 7(24): 1770141
CrossRef
Google scholar
|
[88] |
Fan X, Sun W, Meng F, Xing A, Liu J. Advanced chemical strategies for lithium-sulfur batteries: A review. Green Energy & Environment, 2018, 3(1): 2–19
CrossRef
Google scholar
|
[89] |
Kang W, Deng N, Ju J, Li Q, Wu D, Ma X, Li L, Naebe M, Cheng B. A review of recent developments in rechargeable lithium-sulfur batteries. Nanoscale, 2016, 8(37): 16541–16588
CrossRef
Google scholar
|
[90] |
Zhou G, Pei S, Li L, Wang D W, Wang S, Huang K, Yin L C, Li F, Cheng H M. A Graphene-pure sulfur sandwich structure for ultrafast, long life lithium-sulfur batteries. Advanced Materials, 2013, 26(4): 625–631
CrossRef
Google scholar
|
[91] |
Zhang Y, Wang H, Luo Z, Tan H T, Li B, Sun S, Li Z, Zong Y, Xu Z, Yang Y, Khor K A, Yan Q. Lithium storage: An air-stable densely packed phosphorene-graphene composite toward advanced lithium storage properties. Advanced Energy Materials, 2016, 6(12): 1600453
CrossRef
Google scholar
|
[92] |
Zhao J, Yang Y, Katiyar R S, Chen Z. Phosphorene as a promising anchoring material for lithium-sulfur batteries: A computational study. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(16): 6124–6130
CrossRef
Google scholar
|
[93] |
Sun J, Sun Y, Pasta M, Zhou G, Li Y, Liu W, Xiong F, Cui Y. Entrapment of polysulfides by a black-phosphorus-modified separator for lithium-sulfur batteries. Advanced Materials, 2016, 28(44): 9797–9803
CrossRef
Google scholar
|
[94] |
Hwang J Y, Myung S T, Sun Y K. Sodium-ion batteries: Present and future. Chemical Society Reviews, 2017, 46(12): 3529–3614
CrossRef
Google scholar
|
[95] |
Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nature Reviews. Materials, 2018, 3(4): 18013
CrossRef
Google scholar
|
[96] |
Sun J, Lee H W, Pasta M, Yuan H, Zheng G, Sun Y, Li Y, Cui Y. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. Nature Nanotechnology, 2015, 10(11): 980–985
CrossRef
Google scholar
|
[97] |
Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. Journal of the American Chemical Society, 2017, 139(9): 3316–3319
CrossRef
Google scholar
|
[98] |
Ren X, Lian P, Xie D, Yang Y, Mei Y, Huang X, Wang Z, Yin X. Properties, preparation and application of black phosphorus/phosphorene for energy storage: A review. Journal of Materials Science, 2017, 52(17): 10364–10386
CrossRef
Google scholar
|
[99] |
Wang X, Chen Y, Schmidt O G, Yan C. Engineered nanomembranes for smart energy storage devices. Chemical Society Reviews, 2016, 45(5): 1308–1330
CrossRef
Google scholar
|
[100] |
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature Materials, 2008, 7(11): 845–854
CrossRef
Google scholar
|
[101] |
Wu Z S, Parvez K, Feng X, Müllen K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nature Communications, 2013, 4(1): 2487
CrossRef
Google scholar
|
[102] |
Chen X, Xu G, Ren X, Li Z, Qi X, Huang K, Zhang H, Huang Z, Zhong J. A black/red phosphorus hybrid as an electrode material for high-performance Li-ion batteries and supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(14): 6581–6588
CrossRef
Google scholar
|
[103] |
Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renewable & Sustainable Energy Reviews, 2011, 15(3): 1625–1636
CrossRef
Google scholar
|
[104] |
Roige A, Ossó J O, Martín I, Voz C, Ortega P, López-González J M, Alcubilla R, Vega L F. Microscale characterization of surface recombination at the vicinity of laser-processed regions in c-Si solar cells. IEEE Journal of Photovoltaics, 2016, 6(2): 426–431
CrossRef
Google scholar
|
[105] |
Chen Y J, Zhang M J, Yuan S, Qiu Y, Wang X B, Jiang X, Gao Z, Lin Y, Pan F. Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy. Nano Energy, 2017, 36: 303–312
CrossRef
Google scholar
|
[106] |
Abdulrazzaq O A, Saini V, Bourdo S, Dervishi E, Biris A S. Organic solar cells: A review of materials, limitations, and possibilities for improvement. Particulate Science and Technology, 2013, 31(5): 427–442
CrossRef
Google scholar
|
[107] |
Yang S, Fu W, Zhang Z, Chen H, Li C Z. Recent advances in perovskite solar cells: Efficiency, stability and lead-free perovskite. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482
CrossRef
Google scholar
|
[108] |
Gong J, Sumathy K, Qiao Q, Zhou Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable & Sustainable Energy Reviews, 2017, 68: 234–246
CrossRef
Google scholar
|
[109] |
Viti L, Hu J, Coquillat D, Knap W, Tredicucci A, Politano A, Vitiello M S. Black phosphorus terahertz photodetectors. Advanced Materials, 2015, 27(37): 5567–5572
CrossRef
Google scholar
|
[110] |
Long G, Maryenko D, Shen J, Xu S, Hou J, Wu Z, Wong W K, Han T, Lin J, Cai Y, et al. Achieving ultrahigh carrier mobility in two-dimensional hole gas of black phosphorus. Nano Letters, 2016, 16(12): 7768–7773
CrossRef
Google scholar
|
[111] |
Cui S, Pu H, Wells S A, Wen Z, Mao S, Chang J, Hersam M C, Chen J. Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors. Nature Communications, 2015, 6(1): 8632
CrossRef
Google scholar
|
[112] |
Cai Y, Zhang G, Zhang Y W. Layer-dependent band alignment and work function of few-layer phosphorene. Scientific Reports, 2014, 4(1): 6677
CrossRef
Google scholar
|
[113] |
Lin S, Liu S, Yang Z, Li Y, Ng T W, Xu Z, Bao Q, Hao J, Lee C S, Surya C,
CrossRef
Google scholar
|
[114] |
Chen W, Li K, Wang Y, Feng X, Liao Z, Su Q, Lin X, He Z. Black phosphorus quantum dots for hole extraction of typical planar hybrid perovskite solar cells. Journal of Physical Chemistry Letters, 2017, 8(3): 591–598
CrossRef
Google scholar
|
[115] |
Buscema M, Groenendijk D J, Steele G A, van der Zant H S J, Castellanos-Gomez A. Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nature Communications, 2014, 5(1): 4651
CrossRef
Google scholar
|
[116] |
Dai J, Zeng X C. Bilayer phosphorene: Effect of stacking order on bandgap and its potential applications in thin-film solar cells. Journal of Physical Chemistry Letters, 2014, 5(7): 1289–1293
CrossRef
Google scholar
|
[117] |
Kim D R, Lee C H, Rao P M, Cho I S, Zheng X. Hybrid Si microwire and planar solar cells: Passivation and characterization. Nano Letters, 2011, 11(7): 2704–2708
CrossRef
Google scholar
|
[118] |
Batmunkh M, Bat-Erdene M, Shapter J G. Phosphorene and phosphorene based materials—prospects for future applications. Advanced Materials, 2016, 28(39): 8586–8617
CrossRef
Google scholar
|
[119] |
Kim W, McClure B A, Edri E, Frei H. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies. Chemical Society Reviews, 2016, 45(11): 3221–3243
CrossRef
Google scholar
|
[120] |
Liao P, Carter E A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chemical Society Reviews, 2013, 42(6): 2401–2422
CrossRef
Google scholar
|
[121] |
Maeda K, Domen K. Photocatalytic water splitting: Recent progress and future challenges. Journal of Physical Chemistry Letters, 2010, 1(18): 2655–2661
CrossRef
Google scholar
|
[122] |
Ni M, Leung M K H, Leung D Y C, Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425
CrossRef
Google scholar
|
[123] |
Zhu X, Zhang T, Sun Z, Chen H, Guan J, Chen X, Ji H, Du P, Yang S. Black phosphorus revisited: A missing metal-free elemental photocatalyst for visible light hydrogen evolution. Advanced Materials, 2017, 29(17): 1605776
CrossRef
Google scholar
|
[124] |
Yang J, Wang D, Han H, Li C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research, 2013, 46(8): 1900–1909
CrossRef
Google scholar
|
[125] |
Zhu M, Cai X, Fujitsuka M, Zhang J, Majima T. Au/La2Ti2O7 nanostructures sensitized with black phosphorus for plasmon-enhanced photocatalytic hydrogen production in visible and near-infrared light. Angewandte Chemie International Edition, 2017, 56(8): 2064–2068
CrossRef
Google scholar
|
[126] |
Wei J, Ge Q, Yao R, Wen Z, Fang C, Guo L, Xu H, Sun J. Directly converting CO2 into a gasoline fuel. Nature Communications, 2017, 8: 15174
CrossRef
Google scholar
|
[127] |
Habisreutinger S N, Schmidt-Mende L, Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angewandte Chemie International Edition, 2013, 52(29): 7372–7408
CrossRef
Google scholar
|
[128] |
Tran P D, Wong L H, Barber J, Loo J S C. Recent advances in hybrid photocatalysts for solar fuel production. Energy & Environmental Science, 2012, 5(3): 5902–5918
CrossRef
Google scholar
|
[129] |
Zhang X, Zhang Z, Li J, Zhao X, Wu D, Zhou Z. Ti2CO2 MXene: A highly active and selective photocatalyst for CO2 reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(25): 12899–12903
CrossRef
Google scholar
|
[130] |
Asadi M, Kim K, Liu C, Addepalli A V, Abbasi P, Yasaei P, Phillips P, Behranginia A, Cerrato J M, Haasch R, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO reduction in ionic liquid. Science, 2016, 353(6298): 467–470
CrossRef
Google scholar
|
[131] |
Liang Y T, Vijayan B K, Gray K A, Hersam M C. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production. Nano Letters, 2011, 11(7): 2865–2870
CrossRef
Google scholar
|
[132] |
Yuan Y P, Cao S W, Liao Y S, Yin L S, Xue C. Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Applied Catalysis B: Environmental, 2013, 140-141: 164–168
CrossRef
Google scholar
|
[133] |
Shen Z, Sun S, Wang W, Liu J, Liu Z, Yu J C. A black-red phosphorus heterostructure for efficient visible-light-driven photocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3285–3288
CrossRef
Google scholar
|
[134] |
Ito J I, Nishiyama H. Recent topics of transfer hydrogenation. Tetrahedron Letters, 2014, 55(20): 3133–3146
CrossRef
Google scholar
|
[135] |
Zhao J, Liu X, Chen Z. Frustrated Lewis pair catalysts in two dimensions: B/Al-doped phosphorenes as promising catalysts for hydrogenation of small unsaturated molecules. ACS Catalysis, 2017, 7(1): 766–771
CrossRef
Google scholar
|
[136] |
Caporali M, Serrano-Ruiz M, Telesio F, Heun S, Nicotra G, Spinella C, Peruzzini M. Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chemical Communications, 2017, 53(79): 10946–10949
CrossRef
Google scholar
|
[137] |
Daghrir R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599
CrossRef
Google scholar
|
[138] |
Bhatkhande D S, Pangarkar V G, Beenackers A C M. Photocatalytic degradation for environmental applications: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 77(1): 102–116
CrossRef
Google scholar
|
[139] |
Wang H, Yang X, Shao W, Chen S, Xie J, Zhang X, Wang J, Xie Y. Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. Journal of the American Chemical Society, 2015, 137(35): 11376–11382
CrossRef
Google scholar
|
[140] |
Jiang Q, Xu L, Chen N, Zhang H, Dai L, Wang S. facile synthesis of black phosphorus: An efficient electrocatalyst for the oxygen evolving reaction. Angewandte Chemie International Edition, 2016, 55(44): 13849–13853
CrossRef
Google scholar
|
[141] |
Ren X, Zhou J, Qi X, Liu Y, Huang Z, Li Z, Ge Y, Dhanabalan S C, Ponraj J S, Wang S,
CrossRef
Google scholar
|
[142] |
Nielsch K, Bachmann J, Kimling J, Böttner H. Thermoelectric nanostructures: From physical model systems towards nanograined composites. Advanced Energy Materials, 2011, 1(5): 713–731
CrossRef
Google scholar
|
[143] |
Flores E, Ares J R, Castellanos-Gomez A, Barawi M, Ferrer I J, Sánchez C. Thermoelectric power of bulk black-phosphorus. Applied Physics Letters, 2015, 106(2): 022102
CrossRef
Google scholar
|
[144] |
Lee S, Yang F, Suh J, Yang S, Lee Y, Li G, Sung C H, Suslu A, Chen Y, Ko C, et al. Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nature Communications, 2015, 6(1): 8573
CrossRef
Google scholar
|
[145] |
Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y. Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Scientific Reports, 2015, 5(1): 9961
CrossRef
Google scholar
|
[146] |
Kuang A, Kuang M, Yuan H, Wang G, Chen H, Yang X. Acidic gases (CO2, NO2 and SO2) capture and dissociation on metal decorated phosphorene. Applied Surface Science, 2017, 410: 505–512
CrossRef
Google scholar
|
[147] |
Yu Z G, Zhang Y W, Yakobson B I. Phosphorene-based nanogenerator powered by cyclic molecular doping. Nano Energy, 2016, 23: 34–39
CrossRef
Google scholar
|
[148] |
Irshad R, Tahir K, Li B, Sher Z, Ali J, Nazir S. A revival of 2D materials, phosphorene: Its application as sensors. Journal of Industrial and Engineering Chemistry, 2018, 64(25): 60–69
CrossRef
Google scholar
|
/
〈 | 〉 |