RESEARCH ARTICLE

The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate

  • Ganesh TILEKAR ,
  • Kiran SHINDE ,
  • Kishor KALE ,
  • Reshma RASKAR ,
  • Abaji GAIKWAD
Expand
  • Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411 008, India

Received date: 22 Jan 2011

Accepted date: 05 Sep 2011

Published date: 05 Dec 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The capture of CO2 by transition metal (Mn, Ni, Co and Zn) aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate was carried out at pre- and post-combustion temperatures. The prepared metal adsorbents were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), surface area analysis and acidity/alkalinity measurements. The different experimental variables affecting the adsorbents ability to capture CO2, such as the mol ratio of metal ions, the pressure of CO2, the exposure time and the temperature of the adsorbent were also investigated. Calcium zirconate captured 13.85 wt-% CO2 at 650°C and 2.5 atm and calcium silicate captured 14.31 wt-% at 650°C. Molecular sieves (13X) and carbon can only capture a negligible amount of CO2 at high temperatures (300°C–650°C). However, the mixed metal oxides captured reasonable amount of CO2 at these higher temperatures. In addition, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate adsorbents captured CO2 at both pre and post-combustion temperatures. The trend for the amount of captured carbon dioxide over the adsorbents was calcium aluminate<lithium zirconate<calcium zirconate<calcium silicate.

Cite this article

Ganesh TILEKAR , Kiran SHINDE , Kishor KALE , Reshma RASKAR , Abaji GAIKWAD . The capture of carbon dioxide by transition metal aluminates, calcium aluminate, calcium zirconate, calcium silicate and lithium zirconate[J]. Frontiers of Chemical Science and Engineering, 2011 , 5(4) : 477 -491 . DOI: 10.1007/s11705-011-1107-y

Acknowledgments

The authors are grateful to the Department of Science and Technology, Government of India for Research Grant GAP271526.
1
Birkholzer J T, Zhou Q, Tsang C F. Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on the pressure response in stratified systems. International Journal of Greenhouse Gas Control, 2009, 3(2): 181-194

2
Nathwani J, Ng A. Paths to sustainable energy. Croatia: InTech publisher, 2010, 461-482

3
Gupta H, Fan L S. Carbonation-calcination cycle using high reactivity calcium oxide for carbon dioxide separation from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(16): 4035-4042

4
Mosqueda H A, Vazquez C, Bosch P, Pfeiffer H. Chemical Sorption of Carbon Dioxide (CO2) on Lithium Oxide (Li2O). Chemistry of Materials, 2006, 18: 2307-2310

5
López-Ortiz A, Perez Rivera N G, Reyes Rojas A, Lardizabal Gutierrez D. Novel carbon dioxide solid acceptors using sodium containing oxides. Separation Science and Technology, 2005, 39(15): 3559-3572

6
Douglas A, Costas T. Separation of CO2 from flue gas: a review. Separation Science and Technology, 2005, 40(1): 321-348

7
Hutson N D, Attwood B C. High temperature adsorption of CO2 on various hydrotalcite-like compounds. Adsorption, 2008, 14(6): 781-789

8
Yong Z, Mata V, Rodrigues A E. Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTIcs) at high temperatures. Industrial & Engineering Chemistry Research, 2001, 40(1): 204-209

9
Iwan A, Stephenson H, Ketchie W C, Lapkin A A. High temperature sequestration of CO2 using lithium zirconates. Chemical Engineering Journal, 2009, 146(2): 249-258

10
Ida J I, Lin Y S. Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental Science & Technology, 2003, 37(9): 1999-2004

11
Avalos-Rendón T, Casa-Madrid J, Pfeiffer H. Thermochemical capture of carbon dioxide on lithium aluminates (LiAlO2 and Li5AlO4): a new option for the CO2 absorption. The Journal of Physical Chemistry A, 2009, 113(25): 6919-6923

12
Khomane R B, Sharma B K, Saha S, Kulkarni B D. Reverse microemulsion mediated sol-gel synthesis of lithium silicate nanoparticles under ambient conditions: scope for CO2 sequestration. Chemical Engineering Science, 2006, 61(10): 3415-3418

13
Wang M, Lee C G. Adsorption of CO2 on CaSiO3 at high temperature. Energy Conversion and Management, 2009, 50(3): 636-638

14
Pfeiffer H, Bosch P. Thermal stability and high-temperature carbon dioxide sorption on hexa-lithium zirconate (Li6Zr2O7). Chemistry of Materials, 2005, 17(7): 1704-1710

15
Kwang B Y, Eriksen D Ø. Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science and Technology, 2006, 41(2): 283-296

16
Kalinkin A M, Boldyrev V V, Politov A A, Kalinkina E V, Makarov V N, Kalinnikov V T. Investigation into the mechanism of interaction of calcium and magnesium silicates with carbon dioxide in the course of mechanical activation. Glass Physics and Chemistry, 2003, 29(4): 410-414

17
Korake P V, Gaikwad A G. Capture of carbon dioxide over porous solid adsorbents lithium silicate, lithium aluminate and magnesium aluminate at pre-combustion temperatures. Frontiers in Chemical Science and Engineering, 2011, 5(2): 215-226

18
D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition, 2010, 49(35): 6058-6082

19
Cho J S, Kim S M, Chun H D, Han G W, Lee C H. Carbon dioxide capture with accelerated carbonation of industrial combustion waste. International Journal of Chemical Engineering and Applications, 2011, 2(1): 60-65

20
Ochoa-Fernández E, Rønning M, Grande T, Chen D. Synthesis and CO2 capture properties of nan-ocrystalline lithium zirconate. Chemistry of Materials, 2006, 18(25): 6037-6046

21
Fauth D J, Frommell E A, Hoffman J S, Reasbeck R P, Pennline H W. Eutectic salt promoted lithium zirconate: novel high temperature sorbent for CO2 capture. Fuel Processing Technology, 2005, 86(14-15): 1503-1521

22
Wang M, Lee C G, Ryu C K.CO2 sorption and desorption efficiency of Ca2SiO4. International Journal of Hydrogen Energy, 2008, 33(21): 6368-6372

23
Wang Q, Luo J, Zhong Z, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science, 2011, 4(1): 42-55

24
Galven C, Fourquet J L, Suard E, Crosnier-Lopez M P, Le Berre F.Mechanism of a reversible CO2 capture monitored by the layered perovskite Li2SrTa2O7. Dalton Transactions (Cambridge, England), 2010, 39(17): 4191-4197

25
Ida J, Xiong R, Lin Y S. Synthesis and CO2 sorption properties of pure and modified lithium zirconate. Separation and Purification Technology, 2004, 36(1): 41-51

26
Wang K, Guo X, Zhao P, Zheng C.Cyclic CO2 capture of CaO-based sorbent in the presence of meta-kaolin and aluminum (hydro) oxides. Applied Clay Science, 2010, 50(1): 41-46

27
Wang J, Manovic V, Wu Y, Anthony E J.A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes. Applied Energy, 2010, 87(4): 1453-1458

28
Manovic V, Anthony E J.Reactivation and remaking of calcium aluminate pellets for CO2 capture. Fuel, 2011, 90(1): 233-239

29
Florin N, Fennell P.Synthetic CaO-based sorbent for CO2 capture. Energy Procedia, 2011, 4: 830-838

30
Shimizu T, Hirama T, Hosoda H, Kitano K, Inagaki M, Tejima K. A twin fluid-bed reactor for removal of CO2 from combustion processes. Institution of Chemical Engineers Trans IChemE, 1999, 77: 63-68

31
Yuhua D.Electronic structural and electrochemical properties of lithium zirconates and their capabilities of CO2 capture: a first-principles density-functional theory and phonon dynamics approach. Journal of Renewable Sustainable Energy, 2011, 3, 013102-2-19

32
Pacciani R, Müller C R, Davidson J F, Dennis J S, Hayhurst A N. Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed. The Canadian Journal of Chemical Engineering, 2008, 86(3): 356-366

33
Fauth D J, Hoffman J S, Pennline H W. Dry regenerable sorbents for the separation and capture of CO2 from large point sources. International Journal of Environmental Technology and Management, 2004, 4: 68-81

34
Hernández L O G, Gutiérrez D L, Collins-Martínez V, Ortiz A L. Synthesis, characterization and high temperature CO2 capture evaluation of Li2ZrO3-Na2ZrO3 mixtures. Journal of New Materials for Electrochemical Systems, 2008, 11: 137-142

35
Marini L.Geological sequestration of carbon dioxide, thermodynamics, kinetics, and reaction path modeling. Elsevier, 2006, 11, 1-453

36
Jambor J L, Sabina A P, Roberts A C, Sturman B D. Strontiodresserite, a new Sr-Al carbonate from Montreal Island, Quebec. Canadian Mineralogist, 1977, 15: 405-407

37
Roberts A C. The space group of strontiodresserite. Geological Survey of Canada Paper, 1978, 78-1B, 180

38
Suzuki Y, Morgan P E D, Ohji T. New uniformly porous CaZrO3/MgO composites with three-dimensional network structure from natural dolomite. Journal of the American Ceramic Society, 2000, 83(8): 2091-2093

39
Backs S J, Etsell T H. Electrical properties of transition metal aluminate spinels. Solid State Ionics, 1992, 53-56: 1305-1310

40
Lucovsky G, Whitten J L., Zhang Y. A molecular orbital model for the electronic structure of transition metal atoms in silicate and aluminate alloys. Microelectronic Engineering, 2001, 59(1-4): 329-334

41
Al-Raihani H, Durand B, Chassagneux F, Inman D. A novel preparation of calcia fully stabilized zirconia from molten alkali-metal nitrate. Journal of Materials Chemistry, 1996, 6(3): 495-500

42
Brixner L H, Babcock K. Inorganic single crystals from reactions in fused salts. Materials Research Bulletin, 1968, 3(10): 817-824

43
Bi Z, Zhang R, Wang X, Gu S, Shen B, Shi Y, Liu Z, Zheng Y. Synthesis of zinc aluminate spinel film through the solid-phase reaction between zinc oxide film and α-alumina substrate. Journal of the American Ceramic Society, 2003, 86(12): 2059-2062

44
Bakker W J W., Kapteijn F, Moulijn J A. A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production: conceptual process application to coal gas cleaning. Chemical Engineering Journal, 2003, 96: 223-235

45
Serna-Guerrero R, Belmabkhout Y, Sayari A. Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies. Adsorption, 2010, 16(6): 567-575

Outlines

/