RESEARCH ARTICLE

Proposed EU legislation to force changes in sewage sludge disposal: A case study

  • Vojtěch Turek ,
  • Bohuslav Kilkovský ,
  • Zdeněk Jegla ,
  • Petr Stehlík
Expand
  • Institute of Process Engineering, Faculty of Mechanical Engineering, Brno University of Technology, 61669 Brno, Czech Republic

Received date: 22 Feb 2018

Accepted date: 21 Aug 2018

Published date: 03 Jan 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

The consequences of changes planned in the European Union legislation relevant to the disposal of sewage sludges are discussed. A specific municipal waste water treatment plant is analyzed in terms of drying and subsequent combustion or pyrolysis of the produced stabilized sludge, and the respective net energy balances are carried out. A simplified economic analysis of the two disposal options is presented, which suggest that combustion of the sludge would be economically infeasible while pyrolysis of the sludge in a modular, self-sufficient container unit can bring a small financial benefit due to the selling of the produced phosphorus-rich biochar.

Cite this article

Vojtěch Turek , Bohuslav Kilkovský , Zdeněk Jegla , Petr Stehlík . Proposed EU legislation to force changes in sewage sludge disposal: A case study[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(4) : 660 -669 . DOI: 10.1007/s11705-018-1773-0

Acknowledgement

The authors gratefully acknowledge financial support provided by the Ministry of Education, Youth and Sports of the Czech Republic within the “National Sustainability Programme I” project No. LO1202 “NETME CENTRE PLUS”.
1
Zhang L, Xu C, Champagne P, Mabee W. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management. Waste Management & Research, 2014, 32(7): 586–600

DOI

2
Barber W P F. Thermal hydrolysis for sewage treatment: A critical review. Water Research, 2016, 104: 53–71

DOI

3
Ding H H, Chang S, Liu Y. Biological hydrolysis pretreatment on secondary sludge: Enhancement of anaerobic digestion and mechanism study. Bioresource Technology, 2017, 244: 989–995

DOI

4
Thornley P, Adams P. Greenhouse Gas Balances of Bioenergy Systems. Cambridge: Academic Press, 2017, 152

5
Wołejko E, Wydro U, Jabłońska-Trypuć A, Butarewicz A, Łoboda T. The effect of sewage sludge fertilization on the concentration of PAHs in urban soils. Environmental Pollution, 2018, 232: 347–357

DOI

6
Fuentes D, Valdecantos A, Cortina J, Vallejo V R. Seedling performance in sewage sludge-amended degraded Mediterranean woodlands. Ecological Engineering, 2007, 31(4): 281–291

DOI

7
Bianchini A, Bonfiglioli L, Pellegrini M, Saccani C. Sewage sludge drying process integration with a waste-to-energy power plant. Waste Management (New York, N.Y.), 2015, 42: 159–165

DOI

8
Donatello S, Cheeseman C R. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): A review. Waste Management (New York, N.Y.), 2013, 33(11): 2328–2340

DOI

9
Arlabosse P, Chavez S, Lecomte D. Method for thermal design of paddle dryers: Application to municipal sewage sludge. Drying Technology, 2004, 22(10): 2375–2393

DOI

10
Li Y, Wang H, Zhang J, Wang J, Ouyang L. The industrial practice of co-processing sewage sludge in cement kiln. Procedia Environmental Sciences, 2012, 16: 628–632

DOI

11
Council Directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal L 181(04/07/1986): 6–12

12
Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 relating to fertilisers. Official Journal L 304(21/11/2003): 1–194

13
Chun Y N, Lim M S, Yoshikawa K. Development of a high-efficiency rotary dryer for sewage sludge. Journal of Material Cycles and Waste Management, 2012, 14(1): 65–73

DOI

14
Huang Y W, Chen M Q, Jia L. Assessment on thermal behavior of municipal sewage sludge thin-layer during hot air forced convective drying. Applied Thermal Engineering, 2016, 96: 209–216

DOI

15
Ameri B, Hanini S, Benhamou A, Chibane D. Comparative approach to the performance of direct and indirect solar drying of sludge from sewage plants, experimental and theoretical evaluation. Solar Energy, 2018, 159: 722–732

DOI

16
Mawioo P M, Garcia H A, Hooijmans C M, Velkushanova K, Simonič M, Mijatović I, Brdjanovic D. A pilot-scale microwave technology for sludge sanitization and drying. Science of the Total Environment, 2017, 601-602: 1437–1448

DOI

17
Chen J, Deng Z, Chen W, Lyu L, Wang F. Comparative study on drying characteristics of sewage sludge in two kinds of indirect heat drying equipment. In: Aissaoui A G, Chen B Y, Park E, eds. Proceedings of the 2nd International Conference on Sustainable Development. Paris: Atlantis Press, 2016, 9–13

18
Li S, Li Y, Lu Q, Zhu J, Yao Y, Bao S. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units. Waste Management (New York, N.Y.), 2014, 34(12): 2561–2566

DOI

19
Ha S A, Kim D K, Wang J P. Sludge moisture reduction based on MRT and hold-up estimation method using hot-air belt-type conveyor dryer. In: Proceedings of the International Conference on Information Technology and Industrial Automation. Lancaster: DEStech Publications, Inc.,, 2015, 591–599

20
Louarn S, Ploteau J P, Glouannec P, Noel H. Experimental and numerical study of flat plate sludge drying at low temperature by convection and direct conduction. Drying Technology, 2014, 32(14): 1664–1674

DOI

21
Werther J, Ogada T. Sewage sludge combustion. Progress in Energy and Combustion Science, 1999, 25(1): 55–116

DOI

22
Ma J, Zhang L, Li A. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation. Waste Management (New York, N.Y.), 2016, 56: 411–422

DOI

23
Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008, 34(6): 755–781

DOI

24
Sassi H P, Ikner L A, Abd-Elmaksoud S, Gerba C P, Pepper I L. Comparative survival of viruses during thermophilic and mesophilic anaerobic digestion. Science of the Total Environment, 2018, 615: 15–19

DOI

25
Hosseini S E, Barzegaravval H, Wahid M A, Ganjehkaviri A, Sies M M. Thermodynamic assessment of integrated biogas-based micro-power generation system. Energy Conversion and Management, 2016, 128: 104–119

DOI

26
Higgins M J, Beightol S, Mandahar U, Suzuki R, Xiao S, Lu H W, Le T, Mah J, Pathak B, DeClippeleir H, Novak J T, Al-Omari A, Murthy S N. Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics. Water Research, 2017, 122: 557–569

DOI

27
Bougrier C, Delgenès J P, Carrère H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion. Chemical Engineering Journal, 2008, 139(2): 236–244

DOI

28
Fonts I, Juan A, Gea G, Murillo M B, Sánchez J L. Sewage sludge pyrolysis in fluidized bed, 1: Influence of operational conditions on the product distribution. Industrial & Engineering Chemistry Research, 2008, 47(15): 5376–5385

DOI

29
Jaramillo-Arango A, Fonts I, Chejne F, Arauzo J. Product compositions from sewage sludge pyrolysis in a fluidized bed and correlations with temperature. Journal of Analytical and Applied Pyrolysis, 2016, 121: 287–296

DOI

30
Fonts I, Juan A, Gea G, Murillo M B, Arauzo J. Sewage sludge pyrolysis in a fluidized bed. 2: Influence of operating conditions on some physicochemical properties of the liquid product. Industrial & Engineering Chemistry Research, 2009, 48(4): 2179–2187

DOI

31
Arazo R O, Genuino D A D, de Luna M D G, Capareda S C. Bio-oil production from dry sewage sludge by fast pyrolysis in an electrically-heated fluidized bed reactor. Sustainable Environment Research, 2017, 27(1): 7–14

DOI

32
Han R, Zhao C, Liu J, Chen A, Wang H. Thermal characterization and syngas production from the pyrolysis of biophysical dried and traditional thermal dried sewage sludge. Bioresource Technology, 2015, 198: 276–282

DOI

33
Frišták V, Pipíška M, Soja G. Pyrolysis treatment of sewage sludge: A promising way to produce phosphorus fertilizer. Journal of Cleaner Production, 2018, 172: 1772–1778

DOI

34
Directive 2010/75/EU of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Official Journal L 334(17/12/2010): 17–119

35
Niessen W R. Combustion and Incineration Processes: Applications in Environmental Engineering. 4th ed. Boca Raton: CRC Press, 2010, 5–66

36
Thomsen T P, Sárossy Z, Gøbel B, Stoholm P, Ahrenfeldt J, Frandsen F J, Henriksen U B. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization. Waste Management (New York, N.Y.), 2017, 66: 123–133

DOI

37
Ding W, Li L, Liu J. Investigation of the effects of temperature and sludge characteristics on odors and VOC emissions during the drying process of sewage sludge. Water Science and Technology, 2015, 72(4): 543–552

DOI

38
Tontti T, Poutiainen H, Heinonen-Tanski H. Efficiently treated sewage sludge supplemented with nitrogen and potassium is a good fertilizer for cereals. Land Degradation & Development, 2017, 28(2): 742–751

DOI

39
Sun Y, Jin B S, Huang Y J, Zuo W, Jia J Q, Wang Y Y. Distribution and characteristics of products from pyrolysis of sewage sludge. Advanced Materials Research, 2013, 726-731: 2885–2893

40
Agarwal M, Tardio J, Venkata Mohan S. Pyrolysis of activated sludge: Energy analysis and its technical feasibility. Bioresource Technology, 2015, 178: 70–75

DOI

41
Gerber H, Scherer J, Sehn W, Siekmann K. Thermal Mineralization: Pyreg—A Method for Decentralized Sewage Sludge Treatment. BWK (Düsseldorf), 2010, 62: 55 (in German)

42
Samolada M C, Zabaniotou A A. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece. Waste Management (New York, N.Y.), 2014, 34(2): 411–420

DOI

43
Ashwekar P, Jiang Y, Pan H. Feasibility study of energy recovery by incineration—a case study of the triangle wastewater treatment plant. Dissertation of the Master Degree. Durham: Duke University, 2017, 22–24

44
Sundberg E. Review of advanced pyrolysis processes with lignocellulosic feedstock—technical solutions and market conditions. Dissertation for the Master's Degree. Stockholm: KTH Royal Institute of Technology, 2017, 56 (in Swedish)

Outlines

/