RESEARCH ARTICLE

Salt-assisted synthesis of tree-like oriented SnO2 nanodendrite

  • Jinquan SUN 1,2 ,
  • Zifeng YAN , 1 ,
  • Hongzhi CUI 2
Expand
  • 1. State Key Laboratory for Heavy Oil Processing, PetroChina Key Laboratory of Catalysis, China University of Petroleum, Qingdao 266555, China
  • 2. College of Material Science and Technology, Shandong University of Science and Technology, Qingdao 266510, China

Received date: 05 Nov 2010

Accepted date: 15 Feb 2011

Published date: 05 Jun 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Tree-like SnO2 nanodendrites in large amounts have been prepared through two-step reactions. The nanoparticles used as the precursors have taken aggregation forming tree-like or string of nanodendrtie. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectrometer (EDS), respectively. The results showed that molar ratio of the ethanol/distilled water is an important factor for formation of the different dendrite structures. There are different morphologies between tree-like SnO2 nanowhiskers and bunch of SnO2 nanorods. However, they are growing along the [112 ¯].

Cite this article

Jinquan SUN , Zifeng YAN , Hongzhi CUI . Salt-assisted synthesis of tree-like oriented SnO2 nanodendrite[J]. Frontiers of Chemical Science and Engineering, 2011 , 5(2) : 227 -230 . DOI: 10.1007/s11705-010-0566-x

Acknowledgments

This work was supported by grants from the Program of Science and Technology Bureau of Qingdao (NO. 08-1-3-14-JCH).
1
Ahmadi T S, Wang Z L, Green T C, Henglein A, El-Sayed M A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272(5270): 1924–1925

DOI

2
Ma Y, Qi L, Ma J, Cheng H. Hierarchical, star-shaped PbS crystals formed by a simple solution route. Crystal Growth & Design, 2004, 4(2): 351–354

DOI

3
Lijlma S. Helical microtubules of graphitic carbon. Nature, 1991, 354(7): 56–58

4
Pan Z, Dai Z, Wang Z. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949

DOI

5
Ng H T, Li J, Smith M K, Nguyen P, Cassell A, Han J, Meyyappan M. Growth of epitaxial nanowires at the junctions of nanowalls. Science, 2003, 300(5623): 1249–1253

DOI

6
Kong X Y, Ding Y, Yang R. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662): 1348–1351

DOI

7
Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J. Boron nitride nanomesh. Scinece, 2004, 303(5655): 217–220

DOI

8
Wang W, Yan D, Bratton D, Howdle S M, Wang Q, Lecomte P. Charge transfer complex inimer: a facile route to dendritic materials. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(16): 1348–1352

DOI

9
Frechet J M J. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science, 1994, 263(5154): 1710–1715

DOI

10
Yin L W, Li M S, Liu Y X, Xu B, Sui J L, Qi Y X. Unique single-crystalline beta carbon nitride nanorods. Advanced Materials (Deerfield Beach, Fla.), 2003, 15: 720–726

DOI

11
Lu Q, Gao F, Komarneni S. Biomolecule-assisted synthesis of highly ordered snowflake like structures of bismuth sulfide nanorods. Journal of the American Chemical Society, 2004, 126(1): 54–55

DOI

12
Jian J K, Chen X L, Wang W J, Dai L, Xu Y P. Growth and morphologies of large-scale SnO2 nanowires, nanobelts and nanodendrites. Applied Physics. A, Materials Science & Processing, 2003, 76: 291–294

DOI

13
Cölfen H, Qi L, Mastai Y, Borger L. Formation of unusual 10-petal BaSO4 structures in the presence of a polymeric additive. Crystal Growth & Design, 2002, 2(3): 191–196

DOI

14
Amin N, Isaka T, Yamada A, Konagai M. Highly effcient 1μm thick CdTe solar cells with textured TCOs. Solar Energy Materials and Solar Cells, 2001, 67(1-4): 195–201

DOI

15
Law M, Kind H, Messer B, Messer B, Kim F, Yang P. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie International Edition, 2002, 41(13): 2405–2408

DOI

16
Wang C, Hu Y, Qian Y, Zhao G. A novel method to prepare nanocrystalline SnO2. Nanostructured Materials, 1996, 7(4): 421–427

DOI

17
Nagano M. Growth of SnO2 whiskers by VLS mechanism. Journal of Crystal Growth, 1984, 66(2): 377–379

DOI

18
Liu Y K, Zheng C L, Wang W Z, Zhan Y J. Production of SnO2 nanorods by redox reaction. Journal of Crystal Growth, 2001, 233(1-2): 8–12

DOI

19
Xu C, Zhao X, Liu S, Wang G. Large-scale synthesis of rutile SnO2 nanorods. Solid State Communications, 2003, 125(6): 301–304

DOI

20
Zhang D F, Sun L D, Yin J L, Yan C H, Wang R M. Attachment-driven morphology evolvement of rectangular ZnO nanowires. Journal of Physical Chemistry B, 2005, 109(18): 8786–8790

DOI

21
Zhu J, Lu Z, Aruna S T, Aurbach D, Gedanken A. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chemistry of Materials, 2000, 12 (9): 2557–2566

DOI

22
Wang W, Xu C, Wang G, Liu Y, Zheng C. Synthesis and Raman scattering study of rutile SnO2 nanowires. Journal of Applied Physics, 2002, 92(5): 2740–2742

DOI

23
Zheng M, Li G, Zhang X, Huang S, Lei Y, Zhang L. Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane. Chemistry of Materials, 2001, 13(11): 3859–3861

DOI

24
Zhang D F, Sun L D, Yin J L, Yan C H. Low-temperature fabrication of highly crystalline SnO2 nanorods. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(12): 1022–1025

DOI

25
Li F, Chen L, Chen Z, Xu J, Zhu J, Xin X. Two-step solid-state synthesis of tin oxide and its gas-sensing property. Materials Chemistry and Physics, 2002, 73(2-3): 335–338

DOI

26
W J B, Kaner R B. Rapid solid-state precursor synthesis of materials. Science, 1992, 255(5048): 1093–1097

DOI

27
Wu N L, Wang S Y, Rusakova I A. Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides. Science, 1999, 285(5432): 1375–1377

DOI

28
Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969–971

DOI

29
Ye X R, Jian D Z, Yu J Q, Xin X Q, Xue Z. One step solid-state reactions at ambient temperature—a novel approach to nanocrystal synthesis. Advanced Materials, 1999, 11(11): 941–942

DOI

30
Tang Z Y, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297(5579): 237–240

DOI

Outlines

/