Salt-assisted synthesis of tree-like oriented SnO2 nanodendrite

Jinquan SUN , Zifeng YAN , Hongzhi CUI

Front. Chem. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (2) : 227 -230.

PDF (293KB)
Front. Chem. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (2) : 227 -230. DOI: 10.1007/s11705-010-0566-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Salt-assisted synthesis of tree-like oriented SnO2 nanodendrite

Author information +
History +
PDF (293KB)

Abstract

Tree-like SnO2 nanodendrites in large amounts have been prepared through two-step reactions. The nanoparticles used as the precursors have taken aggregation forming tree-like or string of nanodendrtie. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and energy dispersive spectrometer (EDS), respectively. The results showed that molar ratio of the ethanol/distilled water is an important factor for formation of the different dendrite structures. There are different morphologies between tree-like SnO2 nanowhiskers and bunch of SnO2 nanorods. However, they are growing along the [112 ¯].

Keywords

crystal morphology / nano-structures / nanodendrite

Cite this article

Download citation ▾
Jinquan SUN, Zifeng YAN, Hongzhi CUI. Salt-assisted synthesis of tree-like oriented SnO2 nanodendrite. Front. Chem. Sci. Eng., 2011, 5(2): 227-230 DOI:10.1007/s11705-010-0566-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmadi T S, Wang Z L, Green T C, Henglein A, El-Sayed M A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science, 1996, 272(5270): 1924–1925

[2]

Ma Y, Qi L, Ma J, Cheng H. Hierarchical, star-shaped PbS crystals formed by a simple solution route. Crystal Growth & Design, 2004, 4(2): 351–354

[3]

Lijlma S. Helical microtubules of graphitic carbon. Nature, 1991, 354(7): 56–58

[4]

Pan Z, Dai Z, Wang Z. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947–1949

[5]

Ng H T, Li J, Smith M K, Nguyen P, Cassell A, Han J, Meyyappan M. Growth of epitaxial nanowires at the junctions of nanowalls. Science, 2003, 300(5623): 1249–1253

[6]

Kong X Y, Ding Y, Yang R. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 2004, 303(5662): 1348–1351

[7]

Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J. Boron nitride nanomesh. Scinece, 2004, 303(5655): 217–220

[8]

Wang W, Yan D, Bratton D, Howdle S M, Wang Q, Lecomte P. Charge transfer complex inimer: a facile route to dendritic materials. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(16): 1348–1352

[9]

Frechet J M J. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science, 1994, 263(5154): 1710–1715

[10]

Yin L W, Li M S, Liu Y X, Xu B, Sui J L, Qi Y X. Unique single-crystalline beta carbon nitride nanorods. Advanced Materials (Deerfield Beach, Fla.), 2003, 15: 720–726

[11]

Lu Q, Gao F, Komarneni S. Biomolecule-assisted synthesis of highly ordered snowflake like structures of bismuth sulfide nanorods. Journal of the American Chemical Society, 2004, 126(1): 54–55

[12]

Jian J K, Chen X L, Wang W J, Dai L, Xu Y P. Growth and morphologies of large-scale SnO2 nanowires, nanobelts and nanodendrites. Applied Physics. A, Materials Science & Processing, 2003, 76: 291–294

[13]

Cölfen H, Qi L, Mastai Y, Borger L. Formation of unusual 10-petal BaSO4 structures in the presence of a polymeric additive. Crystal Growth & Design, 2002, 2(3): 191–196

[14]

Amin N, Isaka T, Yamada A, Konagai M. Highly effcient 1μm thick CdTe solar cells with textured TCOs. Solar Energy Materials and Solar Cells, 2001, 67(1-4): 195–201

[15]

Law M, Kind H, Messer B, Messer B, Kim F, Yang P. Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature. Angewandte Chemie International Edition, 2002, 41(13): 2405–2408

[16]

Wang C, Hu Y, Qian Y, Zhao G. A novel method to prepare nanocrystalline SnO2. Nanostructured Materials, 1996, 7(4): 421–427

[17]

Nagano M. Growth of SnO2 whiskers by VLS mechanism. Journal of Crystal Growth, 1984, 66(2): 377–379

[18]

Liu Y K, Zheng C L, Wang W Z, Zhan Y J. Production of SnO2 nanorods by redox reaction. Journal of Crystal Growth, 2001, 233(1-2): 8–12

[19]

Xu C, Zhao X, Liu S, Wang G. Large-scale synthesis of rutile SnO2 nanorods. Solid State Communications, 2003, 125(6): 301–304

[20]

Zhang D F, Sun L D, Yin J L, Yan C H, Wang R M. Attachment-driven morphology evolvement of rectangular ZnO nanowires. Journal of Physical Chemistry B, 2005, 109(18): 8786–8790

[21]

Zhu J, Lu Z, Aruna S T, Aurbach D, Gedanken A. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chemistry of Materials, 2000, 12 (9): 2557–2566

[22]

Wang W, Xu C, Wang G, Liu Y, Zheng C. Synthesis and Raman scattering study of rutile SnO2 nanowires. Journal of Applied Physics, 2002, 92(5): 2740–2742

[23]

Zheng M, Li G, Zhang X, Huang S, Lei Y, Zhang L. Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane. Chemistry of Materials, 2001, 13(11): 3859–3861

[24]

Zhang D F, Sun L D, Yin J L, Yan C H. Low-temperature fabrication of highly crystalline SnO2 nanorods. Advanced Materials (Deerfield Beach, Fla.), 2003, 15(12): 1022–1025

[25]

Li F, Chen L, Chen Z, Xu J, Zhu J, Xin X. Two-step solid-state synthesis of tin oxide and its gas-sensing property. Materials Chemistry and Physics, 2002, 73(2-3): 335–338

[26]

W J B, Kaner R B. Rapid solid-state precursor synthesis of materials. Science, 1992, 255(5048): 1093–1097

[27]

Wu N L, Wang S Y, Rusakova I A. Inhibition of crystallite growth in the sol-gel synthesis of nanocrystalline metal oxides. Science, 1999, 285(5432): 1375–1377

[28]

Penn R L, Banfield J F. Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science, 1998, 281(5379): 969–971

[29]

Ye X R, Jian D Z, Yu J Q, Xin X Q, Xue Z. One step solid-state reactions at ambient temperature—a novel approach to nanocrystal synthesis. Advanced Materials, 1999, 11(11): 941–942

[30]

Tang Z Y, Kotov N A, Giersig M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science, 2002, 297(5579): 237–240

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (293KB)

2482

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/