REVIEW ARTICLE

Methanation of carbon dioxide: an overview

  • Wei WANG ,
  • Jinlong GONG
Expand
  • Key Laboratory for Green Chemical Technology (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

Received date: 08 Nov 2010

Accepted date: 01 Dec 2010

Published date: 05 Mar 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Although being very challenging, utilization of carbon dioxide (CO2) originating from production processes and flue gases of CO2-intensive sectors has a great environmental and industrial potential due to improving the resource efficiency of industry as well as by contributing to the reduction of CO2 emissions. As a renewable and environmentally friendly source of carbon, catalytic approaches for CO2 fixation in the synthesis of chemicals offer the way to mitigate the increasing CO2 buildup. Among the catalytic reactions, methanation of CO2 is a particularly promising technique for producing energy carrier or chemical. This article focuses on recent developments in catalytic materials, novel reactors, and reaction mechanism for methanation of CO2.

Cite this article

Wei WANG , Jinlong GONG . Methanation of carbon dioxide: an overview[J]. Frontiers of Chemical Science and Engineering, 2011 , 5(1) : 2 -10 . DOI: 10.1007/s11705-010-0528-3

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant Nos. 21006068, 21050110425), Seed Foundation of Tianjin University (60303002), and the Program of Introducing Talents of Discipline to Universities (B06006) is gratefully acknowledged.
1
Dell’Amico D B, Calderazzo F, Labella L, Marchetti F, Pampaloni G. Converting carbon dioxide into carbamato derivatives. Chemical Reviews, 2003, 103(10): 3857–3898

DOI PMID

2
Mikkelsen M, Jorgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci, 2010, 3(1): 43–81

DOI

3
Riduan S N, Zhang Y G. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans (Cambridge, England), 2010, 39(14): 3347–3357

DOI PMID

4
Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 2001, 101(4): 953–996

DOI PMID

5
Jessop P G, Joo F, Tai C C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews, 2004, 248(21-24): 2425–2442

DOI

6
Omae I. Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115(1-4): 33–52

DOI

7
Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews, 2007, 107(6): 2365–2387

DOI PMID

8
Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans (Cambridge, England), 2007, (28): 2975–2992

DOI PMID

9
Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chem Commun (Cambridge), 2009, (11): 1312–1330

DOI PMID

10
Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 2009, 148(3-4): 191–205

DOI

11
Lunde P J, Kester F L. Carbon dioxide methanation on a ruthenium catalyst. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 27–33

DOI

12
VanderWiel D P, Zilka-Marco J L, Wang Y, Tonkovich A Y, Wegeng R S. In: Spring National Meeting. Atlanta: AIChe, 2000

13
Chang F W, Kuo M S, Tsay M T, Hsieh M C. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Applied Catalysis A: General, 2003, 247(2): 309–320

DOI

14
Du G A, Lim S, Yang Y H, Wang C, Pfefferle L, Haller G L. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction. Journal of Catalysis, 2007, 249(2): 370–379

DOI

15
Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: I. Specific activity of Ni/SiO2. Journal of Catalysis, 1981, 68(1): 67–76

DOI

16
Peebles D E, Goodman D W, White J M. Methanation of carbon dioxide on nickel (100) and the effects of surface modifiers. Journal of Physical Chemistry, 1983, 87(22): 4378–4387

DOI

17
Vance C K, Bartholomew C H. Hydrogenation of carbon dioxide on group viii metals: III, Effects of support on activity/selectivity and adsorption properties of nickel. Applied Catalysis, 1983, 7(2): 169–177

DOI

18
Chang F W, Hsiao T J, Chung S W, Lo J J. Nickel supported on rice husk ash—activity and selectivity in CO2 methanation. Applied Catalysis A: General, 1997, 164(1-2): 225–236

DOI

19
Chang F W, Hsiao T J, Shih J D. Hydrogenation of CO2 over a rice husk ash supported nickel catalyst prepared by deposition-precipitation. Industrial & Engineering Chemistry Research, 1998, 37(10): 3838–3845

DOI

20
Chang F W, Tsay M T, Liang S P. Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange. Applied Catalysis A: General, 2001, 209(1-2): 217–227

DOI

21
Chang F W, Tsay M T, Kuo M S. Effect of thermal treatments on catalyst reducibility and activity in nickel supported on RHA-Al2O3 systems. Thermochimica Acta, 2002, 386(2): 161–172

DOI

22
Puxley D C, Kitchener I J, Komodromos C, Perkyns N D. In preparation of catalysts. Amsterdam: Elsevier, 1983, 237

23
Sane S, Bonnier J M, Damon J P, Masson J. Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Al intermetallic phases. Applied Catalysis, 1984, 9(1): 69–83

DOI

24
Lee G D, Moon M J, Park J H, Park S S, Hong S S. Raney Ni catalysts derived from different alloy precursors Part II. CO and CO2 methanation activity. Korean J Chem Eng, 2005, 22(4): 541–546

DOI

25
Sehested J, Larsen K E, Kustov A L, Frey A M, Johannessen T, Bligaard T, Andersson M P, Norskov J K, Christensen C H. Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis, 2007, 45(1-4): 9–13

DOI

26
Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys. Catalysis Communications, 2006, 7(1): 24–28

DOI

27
Kaspar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 1999, 50(2): 285–298

DOI

28
Tsolakis A, Golunski S E. Sensitivity of process efficiency to reaction routes in exhaust-gas reforming of diesel fuel. Chemical Engineering Journal, 2006, 117(2): 131–136

DOI

29
Perkas N, Amirian G, Zhong Z Y, Teo J, Gofer Y, Gedanken A. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catalysis Letters, 2009, 130(3-4): 455–462

DOI

30
Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method. Applied Catalysis A: General, 2009, 369(1-2): 90–96

DOI

31
Song H L, Yang J, Zhao J, Chou L J. Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst. Chinese Journal of Catalysis, 2010, 31(1): 21–23

DOI

32
Guo F, Chu W, Xu H Y, Zhang T. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation. Chinese Journal of Catalysis, 2007, 28: 429–434

33
Kustov A L, Frey A M, Larsen K E, Johannessen T, Norskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A: General, 2007, 320: 98–104

DOI

34
Agnelli M, Kolb M, Mirodatos C. CO hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. Journal of Catalysis, 1994, 148(1): 9–21

DOI

35
Kuśmierz M. Kinetic study on carbon dioxide hydrogenation over Ru/gamma-Al2O3 catalysts. Catalysis Today, 2008, 137(2-4): 429–432

DOI

36
Abe T, Tanizawa M, Watanabe K, Taguchi A. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci, 2009, 2(3): 315–321

DOI

37
Kowalczyk Z, Stolecki K, Rarńg-Pilecka W, Miśkiewicz E, Wilczkowska E, Karpińiski Z. Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios. Applied Catalysis A: General, 2008, 342(1-2): 35–39

DOI

38
Luo L, Li S, Zhu Y. The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst. J Serb Chem Soc, 2005, 70(12): 1419–1425

DOI

39
Yu K P, Yu W Y, Kuo M C, Liou Y C, Chien S H. Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation. Applied Catalysis B: Environmental, 2008, 84(1-2): 112–118

DOI

40
Chen Y G, Tomishige K, Yokoyama K, Fujimoto K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Applied Catalysis A: General, 1997, 165(1-2): 335–347

DOI

41
Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part I. Effect of changes to the catalyst during reaction. Catalysis Reviews. Science and Engineering, 2006, 48(2): 91–144

DOI

42
Albers P, Pietsch J, Parker S F. Poisoning and deactivation of palladium catalysts. J Mol Catal A, 2001, 173(1-2): 275–286

DOI

43
Schuurman Y, Mirodatos C, Ferreira-Aparicio P, Rodríguez-Ramos I, Guerrero-Ruiz A. Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts. Catalysis Letters, 2000, 66(1/2): 33–37

DOI

44
Galuszka J. Carbon dioxide chemistry during oxidative coupling of methane on a Li/MgO catalyst. Catalysis Today, 1994, 21(2-3): 321–331

DOI

45
Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. Journal of Catalysis, 2009, 266(1): 92–97

DOI

46
Szailer T, Novak E, Oszko A, Erdohelyi A. Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts. Topics in Catalysis, 2007, 46(1-2): 79–86

DOI

47
Vayenas C G, Bebelis S, Ladas S. Dependence of catalytic rates on catalyst work function. Nature, 1990, 343(6259): 625–627

DOI

48
Lintz H G, Vayenas C G. Solid ion conductors in heterogeneous catalysis. Angewandte Chemie International Edition in English, 1989, 28(6): 708–715

DOI

49
Vayenas C G, Bebelis S, Neophytides S, Yentekakis I V. Non-faradaic electrochemical modification of catalytic activity in solid electrolyte cells. Applied Physics A, Materials Science & Processing, 1989, 49(1): 95–103

DOI

50
Vayenas C G, Koutsodontis C G. Non-Faradaic electrochemical activation of catalysis.The Journal of Chemical Physics, 2008, 128(18): 182506–182518

DOI PMID

51
Bebelis S, Karasali H, Vayenas C G. Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes. Journal of Applied Electrochemistry, 2008, 38(8): 1127–1133

DOI

52
Papaioannou E I, Souentie S, Hammad A, Vayenas C G. Electrochemical promotion of the CO2 hydrogenation reaction using thin Rh, Pt and Cu films in a monolithic reactor at atmospheric pressure. Catalysis Today, 2009, 146(3-4): 336–344

DOI

53
Krämer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier W F. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Applied Catalysis A: General, 2009, 369(1-2): 42–52

DOI

54
Falconer J L, Zagli A E. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. Journal of Catalysis, 1980, 62(2): 280–285

DOI

55
Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472

DOI

56
Marwood M, Doepper R, Renken A. In-situ surface and gas phase analysis for kinetic studies under transient conditions: The catalytic hydrogenation of CO2. Applied Catalysis A: General, 1997, 151(1): 223–246

DOI

57
Fujita S, Terunuma H, Kobayashi H, Takezawa N. Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state. React Kinet Catal Lett, 1987, 33(1): 179–184

DOI

58
Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity. Journal of Molecular Catalysis, 1990, 63(2): 243–254

DOI

59
Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals: IV. The kinetic behavior of CO hydrogenation over Ni catalysts. Journal of Catalysis, 1976, 44(1): 152–162

DOI

60
Huang C P, Richardson J T. Alkali promotion of nickel catalysts for carbon monoxide methanation. Journal of Catalysis, 1978, 51(1): 1–8

DOI

61
Araki M, Ponec V. Methanation of carbon monoxide on nickel and nickel-copper alloys. Journal of Catalysis, 1976, 44(3): 439–448

DOI

62
Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen J R. Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios.The Journal of Physical Chemistry B, 2005, 109(6): 2432–2438

DOI PMID

63
Lapidus A L, Gaidai N A, Nekrasov N V, Tishkova L A, Agafonov Y A, Myshenkova T N. The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Petroleum Chemistry, 2007, 47(2): 75–82

DOI

64
Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nørskov J K. Theoretical studies of stability and reactivity of CHx species on Ni(111). Journal of Catalysis, 2000, 189(1): 16–30

DOI

65
Ackermann M, Robach O, Walker C, Quiros C, Isern H, Ferrer S. Hydrogenation of carbon monoxide on Ni(1 1 1) investigated with surface X-ray diffraction at atmospheric pressure. Surface Science, 2004, 557(1-3): 21–30

DOI

66
Choe S J, Kang H J, Kim S J, Park S B, Park D H, Huh D S. Adsorbed carbon formation and carbon hydrogenation for CO2 methanation on the Ni(111) surface: ASED-MO study. Bulletin of the Korean Chemical Society, 2005, 26(11): 1682–1688

DOI

67
Kim H Y, Lee H M, Park J N. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: independent roles of MgO and Pd on CO2 methanation. Journal of Physical Chemistry C, 2010, 114(15): 7128–7131

DOI

68
Blangenois N, Jacquemin M, Ruiz P. <patent>U S. Patent, WO2010006386</patent>, 2010-<month>1</month>-<day>21</day>

69
Jacquemin M, Beuls A, Ruiz P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catalysis Today, 2010, 157(1-4): 462–466

DOI

Outlines

/