Methanation of carbon dioxide: an overview
Wei WANG, Jinlong GONG
Methanation of carbon dioxide: an overview
Although being very challenging, utilization of carbon dioxide (CO2) originating from production processes and flue gases of CO2-intensive sectors has a great environmental and industrial potential due to improving the resource efficiency of industry as well as by contributing to the reduction of CO2 emissions. As a renewable and environmentally friendly source of carbon, catalytic approaches for CO2 fixation in the synthesis of chemicals offer the way to mitigate the increasing CO2 buildup. Among the catalytic reactions, methanation of CO2 is a particularly promising technique for producing energy carrier or chemical. This article focuses on recent developments in catalytic materials, novel reactors, and reaction mechanism for methanation of CO2.
CO2 methanation / hydrogenation / catalysis / methane / environmental science
[1] |
Dell’Amico D B, Calderazzo F, Labella L, Marchetti F, Pampaloni G. Converting carbon dioxide into carbamato derivatives. Chemical Reviews, 2003, 103(10): 3857–3898
CrossRef
Pubmed
Google scholar
|
[2] |
Mikkelsen M, Jorgensen M, Krebs F C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci, 2010, 3(1): 43–81
CrossRef
Google scholar
|
[3] |
Riduan S N, Zhang Y G. Recent developments in carbon dioxide utilization under mild conditions. Dalton Trans (Cambridge, England), 2010, 39(14): 3347–3357
CrossRef
Pubmed
Google scholar
|
[4] |
Arakawa H, Aresta M, Armor J N, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J, Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas G J, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Periana R, Que L, Rostrup-Nielson J, Sachtler W M H, Schmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 2001, 101(4): 953–996
CrossRef
Pubmed
Google scholar
|
[5] |
Jessop P G, Joo F, Tai C C. Recent advances in the homogeneous hydrogenation of carbon dioxide. Coordination Chemistry Reviews, 2004, 248(21-24): 2425–2442
CrossRef
Google scholar
|
[6] |
Omae I. Aspects of carbon dioxide utilization. Catalysis Today, 2006, 115(1-4): 33–52
CrossRef
Google scholar
|
[7] |
Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews, 2007, 107(6): 2365–2387
CrossRef
Pubmed
Google scholar
|
[8] |
Aresta M, Dibenedetto A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges. Dalton Trans (Cambridge, England), 2007, (28): 2975–2992
CrossRef
Pubmed
Google scholar
|
[9] |
Sakakura T, Kohno K. The synthesis of organic carbonates from carbon dioxide. Chem Commun (Cambridge), 2009, (11): 1312–1330
CrossRef
Pubmed
Google scholar
|
[10] |
Centi G, Perathoner S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catalysis Today, 2009, 148(3-4): 191–205
CrossRef
Google scholar
|
[11] |
Lunde P J, Kester F L. Carbon dioxide methanation on a ruthenium catalyst. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 27–33
CrossRef
Google scholar
|
[12] |
VanderWiel D P, Zilka-Marco J L, Wang Y, Tonkovich A Y, Wegeng R S. In: Spring National Meeting. Atlanta: AIChe, 2000
|
[13] |
Chang F W, Kuo M S, Tsay M T, Hsieh M C. Hydrogenation of CO2 over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation. Applied Catalysis A: General, 2003, 247(2): 309–320
CrossRef
Google scholar
|
[14] |
Du G A, Lim S, Yang Y H, Wang C, Pfefferle L, Haller G L. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts: The influence of catalyst pretreatment and study of steady-state reaction. Journal of Catalysis, 2007, 249(2): 370–379
CrossRef
Google scholar
|
[15] |
Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: I. Specific activity of Ni/SiO2. Journal of Catalysis, 1981, 68(1): 67–76
CrossRef
Google scholar
|
[16] |
Peebles D E, Goodman D W, White J M. Methanation of carbon dioxide on nickel (100) and the effects of surface modifiers. Journal of Physical Chemistry, 1983, 87(22): 4378–4387
CrossRef
Google scholar
|
[17] |
Vance C K, Bartholomew C H. Hydrogenation of carbon dioxide on group viii metals: III, Effects of support on activity/selectivity and adsorption properties of nickel. Applied Catalysis, 1983, 7(2): 169–177
CrossRef
Google scholar
|
[18] |
Chang F W, Hsiao T J, Chung S W, Lo J J. Nickel supported on rice husk ash—activity and selectivity in CO2 methanation. Applied Catalysis A: General, 1997, 164(1-2): 225–236
CrossRef
Google scholar
|
[19] |
Chang F W, Hsiao T J, Shih J D. Hydrogenation of CO2 over a rice husk ash supported nickel catalyst prepared by deposition-precipitation. Industrial & Engineering Chemistry Research, 1998, 37(10): 3838–3845
CrossRef
Google scholar
|
[20] |
Chang F W, Tsay M T, Liang S P. Hydrogenation of CO2 over nickel catalysts supported on rice husk ash prepared by ion exchange. Applied Catalysis A: General, 2001, 209(1-2): 217–227
CrossRef
Google scholar
|
[21] |
Chang F W, Tsay M T, Kuo M S. Effect of thermal treatments on catalyst reducibility and activity in nickel supported on RHA-Al2O3 systems. Thermochimica Acta, 2002, 386(2): 161–172
CrossRef
Google scholar
|
[22] |
Puxley D C, Kitchener I J, Komodromos C, Perkyns N D. In preparation of catalysts. Amsterdam: Elsevier, 1983, 237
|
[23] |
Sane S, Bonnier J M, Damon J P, Masson J. Raney metal catalysts: I. comparative properties of raney nickel proceeding from Ni-Al intermetallic phases. Applied Catalysis, 1984, 9(1): 69–83
CrossRef
Google scholar
|
[24] |
Lee G D, Moon M J, Park J H, Park S S, Hong S S. Raney Ni catalysts derived from different alloy precursors Part II. CO and CO2 methanation activity. Korean J Chem Eng, 2005, 22(4): 541–546
CrossRef
Google scholar
|
[25] |
Sehested J, Larsen K E, Kustov A L, Frey A M, Johannessen T, Bligaard T, Andersson M P, Norskov J K, Christensen C H. Discovery of technical methanation catalysts based on computational screening. Topics in Catalysis, 2007, 45(1-4): 9–13
CrossRef
Google scholar
|
[26] |
Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K. Effect of tetragonal ZrO2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys. Catalysis Communications, 2006, 7(1): 24–28
CrossRef
Google scholar
|
[27] |
Kaspar J, Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis. Catalysis Today, 1999, 50(2): 285–298
CrossRef
Google scholar
|
[28] |
Tsolakis A, Golunski S E. Sensitivity of process efficiency to reaction routes in exhaust-gas reforming of diesel fuel. Chemical Engineering Journal, 2006, 117(2): 131–136
CrossRef
Google scholar
|
[29] |
Perkas N, Amirian G, Zhong Z Y, Teo J, Gofer Y, Gedanken A. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catalysis Letters, 2009, 130(3-4): 455–462
CrossRef
Google scholar
|
[30] |
Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method. Applied Catalysis A: General, 2009, 369(1-2): 90–96
CrossRef
Google scholar
|
[31] |
Song H L, Yang J, Zhao J, Chou L J. Methanation of carbon dioxide over a highly dispersed Ni/La2O3 catalyst. Chinese Journal of Catalysis, 2010, 31(1): 21–23
CrossRef
Google scholar
|
[32] |
Guo F, Chu W, Xu H Y, Zhang T. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation. Chinese Journal of Catalysis, 2007, 28: 429–434
|
[33] |
Kustov A L, Frey A M, Larsen K E, Johannessen T, Norskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A: General, 2007, 320: 98–104
CrossRef
Google scholar
|
[34] |
Agnelli M, Kolb M, Mirodatos C. CO hydrogenation on a nickel catalyst: 1. Kinetics and modeling of a low-temperature sintering process. Journal of Catalysis, 1994, 148(1): 9–21
CrossRef
Google scholar
|
[35] |
Kuśmierz M. Kinetic study on carbon dioxide hydrogenation over Ru/gamma-Al2O3 catalysts. Catalysis Today, 2008, 137(2-4): 429–432
CrossRef
Google scholar
|
[36] |
Abe T, Tanizawa M, Watanabe K, Taguchi A. CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy Environ Sci, 2009, 2(3): 315–321
CrossRef
Google scholar
|
[37] |
Kowalczyk Z, Stolecki K, Rarńg-Pilecka W, Miśkiewicz E, Wilczkowska E, Karpińiski Z. Supported ruthenium catalysts for selective methanation of carbon oxides at very low COx/H2 ratios. Applied Catalysis A: General, 2008, 342(1-2): 35–39
CrossRef
Google scholar
|
[38] |
Luo L, Li S, Zhu Y. The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst. J Serb Chem Soc, 2005, 70(12): 1419–1425
CrossRef
Google scholar
|
[39] |
Yu K P, Yu W Y, Kuo M C, Liou Y C, Chien S H. Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation. Applied Catalysis B: Environmental, 2008, 84(1-2): 112–118
CrossRef
Google scholar
|
[40] |
Chen Y G, Tomishige K, Yokoyama K, Fujimoto K. Promoting effect of Pt, Pd and Rh noble metals to the Ni0.03Mg0.97O solid solution catalysts for the reforming of CH4 with CO2. Applied Catalysis A: General, 1997, 165(1-2): 335–347
CrossRef
Google scholar
|
[41] |
Borodziński A, Bond G C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part I. Effect of changes to the catalyst during reaction. Catalysis Reviews. Science and Engineering, 2006, 48(2): 91–144
CrossRef
Google scholar
|
[42] |
Albers P, Pietsch J, Parker S F. Poisoning and deactivation of palladium catalysts. J Mol Catal A, 2001, 173(1-2): 275–286
CrossRef
Google scholar
|
[43] |
Schuurman Y, Mirodatos C, Ferreira-Aparicio P, Rodríguez-Ramos I, Guerrero-Ruiz A. Bifunctional pathways in the carbon dioxide reforming of methane over MgO-promoted Ru/C catalysts. Catalysis Letters, 2000, 66(1/2): 33–37
CrossRef
Google scholar
|
[44] |
Galuszka J. Carbon dioxide chemistry during oxidative coupling of methane on a Li/MgO catalyst. Catalysis Today, 1994, 21(2-3): 321–331
CrossRef
Google scholar
|
[45] |
Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. Journal of Catalysis, 2009, 266(1): 92–97
CrossRef
Google scholar
|
[46] |
Szailer T, Novak E, Oszko A, Erdohelyi A. Effect of H2S on the hydrogenation of carbon dioxide over supported Rh catalysts. Topics in Catalysis, 2007, 46(1-2): 79–86
CrossRef
Google scholar
|
[47] |
Vayenas C G, Bebelis S, Ladas S. Dependence of catalytic rates on catalyst work function. Nature, 1990, 343(6259): 625–627
CrossRef
Google scholar
|
[48] |
Lintz H G, Vayenas C G. Solid ion conductors in heterogeneous catalysis. Angewandte Chemie International Edition in English, 1989, 28(6): 708–715
CrossRef
Google scholar
|
[49] |
Vayenas C G, Bebelis S, Neophytides S, Yentekakis I V. Non-faradaic electrochemical modification of catalytic activity in solid electrolyte cells. Applied Physics A, Materials Science & Processing, 1989, 49(1): 95–103
CrossRef
Google scholar
|
[50] |
Vayenas C G, Koutsodontis C G. Non-Faradaic electrochemical activation of catalysis.The Journal of Chemical Physics, 2008, 128(18): 182506–182518
CrossRef
Pubmed
Google scholar
|
[51] |
Bebelis S, Karasali H, Vayenas C G. Electrochemical promotion of CO2 hydrogenation on Rh/YSZ electrodes. Journal of Applied Electrochemistry, 2008, 38(8): 1127–1133
CrossRef
Google scholar
|
[52] |
Papaioannou E I, Souentie S, Hammad A, Vayenas C G. Electrochemical promotion of the CO2 hydrogenation reaction using thin Rh, Pt and Cu films in a monolithic reactor at atmospheric pressure. Catalysis Today, 2009, 146(3-4): 336–344
CrossRef
Google scholar
|
[53] |
Krämer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier W F. The impact of dopants on the activity and selectivity of a Ni-based methanation catalyst. Applied Catalysis A: General, 2009, 369(1-2): 42–52
CrossRef
Google scholar
|
[54] |
Falconer J L, Zagli A E. Adsorption and methanation of carbon dioxide on a nickel/silica catalyst. Journal of Catalysis, 1980, 62(2): 280–285
CrossRef
Google scholar
|
[55] |
Weatherbee G D, Bartholomew C H. Hydrogenation of CO2 on group VIII metals: II. Kinetics and mechanism of CO2 hydrogenation on nickel. Journal of Catalysis, 1982, 77(2): 460–472
CrossRef
Google scholar
|
[56] |
Marwood M, Doepper R, Renken A. In-situ surface and gas phase analysis for kinetic studies under transient conditions: The catalytic hydrogenation of CO2. Applied Catalysis A: General, 1997, 151(1): 223–246
CrossRef
Google scholar
|
[57] |
Fujita S, Terunuma H, Kobayashi H, Takezawa N. Methanation of carbon monoxide and carbon dioxide over nickel catalyst under the transient state. React Kinet Catal Lett, 1987, 33(1): 179–184
CrossRef
Google scholar
|
[58] |
Schild C, Wokaun A, Baiker A. On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity. Journal of Molecular Catalysis, 1990, 63(2): 243–254
CrossRef
Google scholar
|
[59] |
Vannice M A. The catalytic synthesis of hydrocarbons from H2/CO mixtures over the group VIII metals: IV. The kinetic behavior of CO hydrogenation over Ni catalysts. Journal of Catalysis, 1976, 44(1): 152–162
CrossRef
Google scholar
|
[60] |
Huang C P, Richardson J T. Alkali promotion of nickel catalysts for carbon monoxide methanation. Journal of Catalysis, 1978, 51(1): 1–8
CrossRef
Google scholar
|
[61] |
Araki M, Ponec V. Methanation of carbon monoxide on nickel and nickel-copper alloys. Journal of Catalysis, 1976, 44(3): 439–448
CrossRef
Google scholar
|
[62] |
Sehested J, Dahl S, Jacobsen J, Rostrup-Nielsen J R. Methanation of CO over nickel: Mechanism and kinetics at high H2/CO ratios.The Journal of Physical Chemistry B, 2005, 109(6): 2432–2438
CrossRef
Pubmed
Google scholar
|
[63] |
Lapidus A L, Gaidai N A, Nekrasov N V, Tishkova L A, Agafonov Y A, Myshenkova T N. The mechanism of carbon dioxide hydrogenation on copper and nickel catalysts. Petroleum Chemistry, 2007, 47(2): 75–82
CrossRef
Google scholar
|
[64] |
Watwe R M, Bengaard H S, Rostrup-Nielsen J R, Dumesic J A, Nørskov J K. Theoretical studies of stability and reactivity of CHx species on Ni(111). Journal of Catalysis, 2000, 189(1): 16–30
CrossRef
Google scholar
|
[65] |
Ackermann M, Robach O, Walker C, Quiros C, Isern H, Ferrer S. Hydrogenation of carbon monoxide on Ni(1 1 1) investigated with surface X-ray diffraction at atmospheric pressure. Surface Science, 2004, 557(1-3): 21–30
CrossRef
Google scholar
|
[66] |
Choe S J, Kang H J, Kim S J, Park S B, Park D H, Huh D S. Adsorbed carbon formation and carbon hydrogenation for CO2 methanation on the Ni(111) surface: ASED-MO study. Bulletin of the Korean Chemical Society, 2005, 26(11): 1682–1688
CrossRef
Google scholar
|
[67] |
Kim H Y, Lee H M, Park J N. Bifunctional mechanism of CO2 methanation on Pd-MgO/SiO2 catalyst: independent roles of MgO and Pd on CO2 methanation. Journal of Physical Chemistry C, 2010, 114(15): 7128–7131
CrossRef
Google scholar
|
[68] |
Blangenois N, Jacquemin M, Ruiz P. <patent>U S. Patent, WO2010006386</patent>, 2010-<month>1</month>-<day>21</day>
|
[69] |
Jacquemin M, Beuls A, Ruiz P. Catalytic production of methane from CO2 and H2 at low temperature: Insight on the reaction mechanism. Catalysis Today, 2010, 157(1-4): 462–466
CrossRef
Google scholar
|
/
〈 | 〉 |