REVIEW ARTICLE

An overview of carbon nanotubes role in heavy metals removal from wastewater

  • Leila Ouni ,
  • Ali Ramazani ,
  • Saeid Taghavi Fardood
Expand
  • Department of Chemistry, University of Zanjan, Zanjan, Iran

Received date: 16 May 2018

Accepted date: 06 Jul 2018

Published date: 15 Jun 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

The scarcity of water, mainly in arid and semi-arid areas of the world is exerting exceptional pressure on sources and necessitates offering satisfactory water for human and different uses. Water recycle/reuse has confirmed to be successful and promising in reliable water delivery. For that reason, attention is being paid to the effective treatment of alternative resources of water (other than fresh water) which includes seawater, storm water, wastewater (e.g., dealt with sewage water), and industrial wastewater. Carbon nanotubes (CNTs) are called the technology of 21st century. Nowadays CNTs have been widely used for adsorption of heavy metals from water/wastewater due to their unique physical and chemical properties. This paper reviews some recent progress (from 2013 to 2018) in the application of CNTs for the adsorption of heavy metals in order to remove toxic pollutants from contaminated water. CNTs are expected to be a promising adsorbent in the future because of its high adsorption potential in comparison to many traditional adsorbents.

Cite this article

Leila Ouni , Ali Ramazani , Saeid Taghavi Fardood . An overview of carbon nanotubes role in heavy metals removal from wastewater[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(2) : 274 -295 . DOI: 10.1007/s11705-018-1765-0

1
Marques P, Rosa M, Pinheiro H. pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery biomass. Bioprocess and Biosystems Engineering, 2000, 23(2): 135–141

DOI

2
Dubey R, Xavier R. Study on removal of toxic metals using various adsorbents from aqueous environment: A review. Scinzer Journal of Engineering, 2015, 1(1): 30–36

3
Zahra N. Lead removal from water by low cost adsorbents: A review. Pakistan Journal of Analytical & Environmental Chemistry, 2012, 13(1): 8

4
Sadegh H, Shahryari-ghoshekandi R, Tyagi I, Agarwal S, Gupta V K. Kinetic and thermodynamic studies for alizarin removal from liquid phase using poly-2-hydroxyethyl methacrylate (PHEMA). Journal of Molecular Liquids, 2015, 207: 21–27

DOI

5
Gupta V, Tyagi I, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf A, Maazinejad B. Nanoparticles as adsorbent: A positive approach for removal of noxious metal ions: A review. Science. Technology and Development, 2015, 34(3): 195–214

DOI

6
Taghavi Fardood S, Atrak K, Ramazani A. Green synthesis using tragacanth gum and characterization of Ni-Cu-Zn ferrite nanoparticles as a magnetically separable photocatalyst for organic dyes degradation from aqueous solution under visible light. Journal of Materials Science Materials in Electronics, 2017, 28(14): 10739–10746

DOI

7
Taghavi Fardood S, Golfar Z, Ramazani A. Novel sol-gel synthesis and characterization of superparamagnetic magnesium ferrite nanoparticles using tragacanth gum as a magnetically separable photocatalyst for degradation of reactive blue 21 dye and kinetic study. Journal of Materials Science Materials in Electronics, 2017, 28(22): 17002–17008

DOI

8
Shayegan M E, Sorbiun M, Ramazani A, Taghavi Fardood S. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. Journal of Materials Science Materials in Electronics, 2017, 29(2): 1333–1340

DOI

9
Sorbiun M, Shayegan M E, Ramazani A, Taghavi Fardood S. Biosynthesis of Ag, ZnO and bimetallic Ag/ZnO alloy nanoparticles by aqueous extract of oak fruit hull (Jaft) and investigation of photocatalytic activity of ZnO and bimetallic Ag/ZnO for degradation of basic violet 3 dye. Journal of Materials Science Materials in Electronics, 2018, 29(4): 2806–2814

DOI

10
Duruibe J, Ogwuegbu M, Egwurugwu J. Heavy metal pollution and human biotoxic effects. International Journal of Physical Sciences, 2007, 2(5): 112–118

11
Järup L. Hazards of heavy metal contamination. British Medical Bulletin, 2003, 68(1): 167–182

DOI

12
Zahir F, Rizwi S J, Haq S K, Khan R H. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology, 2005, 20(2): 351–360

DOI

13
Langford N, Ferner R. Toxicity of mercury. Journal of Human Hypertension, 1999, 13(10): 651–656

DOI

14
Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 2003, 97(1): 219–243

DOI

15
Ernhart C B. A critical review of low-level prenatal lead exposure in the human: 1. Effects on the fetus and newborn. Reproductive Toxicology (Elmsford, N.Y.), 1992, 6(1): 9–19

DOI

16
Gupta V K, Tyagi I, Agarwal S, Sadegh H, Shahryari-ghoshekandi R, Yari M, Yousefi-nejat O. Experimental study of surfaces of hydrogel polymers HEMA, HEMA-EEMA-MA, and PVA as adsorbent for removal of azo dyes from liquid phase. Journal of Molecular Liquids, 2015, 206: 129–136

DOI

17
Wang X, Guo Y, Yang L, Han M, Zhao J, Cheng X. Nanomaterials as sorbents to remove heavy metal ions in wastewater treatment. Journal of Environmental & Analytical Toxicology, 2012, 2(7): 1000154

DOI

18
Zhao G, Li J, Ren X, Chen C, Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental Science & Technology, 2011, 45(24): 10454–10462

DOI

19
Lu C, Chiu H. Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science, 2006, 61(4): 1138–1145

DOI

20
Tuzen M, Soylak M. Multiwalled carbon nanotubes for speciation of chromium in environmental samples. Journal of Hazardous Materials, 2007, 147(1): 219–225

DOI

21
Taghavi Fardood S, Ramazani A, Moradi S, Azimzadeh A P. Green synthesis of zinc oxide nanoparticles using arabic gum and photocatalytic degradation of direct blue 129 dye under visible light. Journal of Materials Science Materials in Electronics, 2017, 28(18): 13596–13601

DOI

22
Sorbiun M, Shayegan M E, Ramazani A, Taghavi Fardood S. Green synthesis of zinc oxide and copper oxide nanoparticles using aqueous extract of oak fruit hull (jaft) and comparing their photocatalytic degradation of basic violet 3. International Journal of Environmental of Research, 2018, 12(1): 29–37

DOI

23
Luke C. Photometric determination of antimony and thallium in lead. Analytical Chemistry, 1959, 31(10): 1680–1682

DOI

24
Shah K, Gupta K, Sengupta B. Selective separation of copper and zinc from spent chloride brass pickle liquors using solvent extraction and metal recovery by precipitation-stripping. Journal of Environmental Chemical Engineering, 2017, 5(5): 5260–5269

DOI

25
Reynier N, Coudert L, Blais J F, Mercier G, Besner S. Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange. Journal of Environmental Chemical Engineering, 2015, 3(2): 977–985

DOI

26
Means J L, Crerar D A, Borcsik M P, Duguid J O. Adsorption of Co and selected actinides by Mn and Fe oxides in soils and sediments. Geochimica et Cosmochimica Acta, 1978, 42(12): 1763–1773

DOI

27
Nozaki T. Indirect colorimetric determination of Thallium. Journal of the Chemical Society of Japan. Pure Chemistry Section, 1956, 77: 493–498

28
Strelow F, Victor A. Quantitative separation of Al, Ga, In, and Tl by cation exchange chromatography in hydrochloric acid-acetone. Talanta, 1972, 19(9): 1019–1023

DOI

29
Matthews A, Kiley J P. The determination of thallium in silicate rocks, marine sediments and sea water. Analytica Chimica Acta, 1969, 48(1): 25–34

DOI

30
Fu F, Wang Q. Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 2011, 92(3): 407–418

DOI

31
Sato T, Sato K. Liquid-liquid extraction of indium (III) from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy, 1992, 30(1-3): 367–383

DOI

32
Zhang Y, Jin B, Ma B, Feng X. Separation of indium from lead smelting hazardous dust via leaching and solvent extraction. Journal of Environmental Chemical Engineering, 2017, 5(3): 2182–2188

DOI

33
Bidari E, Irannejad M, Gharabaghi M. Solvent extraction recovery and separation of cadmium and copper from sulphate solution. Journal of Environmental Chemical Engineering, 2013, 1(4): 1269–1274

DOI

34
Cheng C Y, Barnard K R, Zhang W, Zhu Z, Pranolo Y. Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction. Chinese Journal of Chemical Engineering, 2016, 24(2): 237–248

DOI

35
Yamini Y, Ashtari P, Khanchi A, Ghannadi-Maragheh M, Shamsipur M. Preconcentration of trace amounts of uranium in water samples on octadecyl silica membrane disks modified by bis (2-ethylhexyl) hydrogen phosphate and its determination by alpha-spectrometry without electrodeposition. Journal of Radioanalytical and Nuclear Chemistry, 1999, 242(3): 783–786

DOI

36
Shamsipur M, Yamini Y, Ashtari P, Khanchi A R, Ghannadi-Marageh M. A rapid method for the extraction and separation of uranium from thorium and other accompanying elements using octadecyl silica membrane disks modified by tri-n-octyl phosphine oxide. Separation Science and Technology, 2000, 35(7): 1011–1019

DOI

37
Ashtari P, Wang K, Yang X, Ahmadi S J. Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles. Analytica Chimica Acta, 2009, 646(1): 123–127

DOI

38
Knyazkova T, Kavitskaya A. Improved performance of reverse osmosis with dynamic layers onto membranes in separation of concentrated salt solutions. Desalination, 2000, 131(1-3): 129–136

DOI

39
Ersahin M E, Ozgun H, Dereli R K, Ozturk I, Roest K, van Lier J B. A review on dynamic membrane filtration: Materials, applications and future perspectives. Bioresource Technology, 2012, 122: 196–206

DOI

40
Khosravi J, Alamdari A. Copper removal from oil-field brine by coprecipitation. Journal of Hazardous Materials, 2009, 166(2): 695–700

DOI

41
Al-Rashdi B, Somerfield C, Hilal N. Heavy metals removal using adsorption and nanofiltration techniques. Separation and Purification Reviews, 2011, 40(3): 209–259

DOI

42
Elsehly E, Chechenin N, Makunin A, Vorobyeva E, Motaweh H. Oxidized carbon nanotubes filters for iron removal from aqueous solutions. International Journal of New Technologies in Science and Engineering, 2015, 2(2): 14–18

43
Hossini H, Rezaee A, Mohamadiyan G. Hexavalent chromium removal from aqueous solution using functionalized multi-walled carbon nanotube: Optimization of parameters by response surface methodology. Health Scope, 2015, 4(1): e19892

DOI

44
Mohammadi T, Razmi A, Sadrzadeh M. Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis. Desalination, 2004, 167: 379–385

DOI

45
Barakat M. New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 2011, 4(4): 361–377

DOI

46
Deliyanni E, Peleka E, Matis K. Removal of zinc ion from water by sorption onto iron-based nanoadsorbent. Journal of Hazardous Materials, 2007, 141(1): 176–184

DOI

47
Mobasherpour I, Salahi E, Ebrahimi M. Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: Equilibrium and kinetic processes. Research on Chemical Intermediates, 2012, 38(9): 2205–2222

DOI

48
Liu C, Bai R, San Ly Q. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Research, 2008, 42(6): 1511–1522

DOI

49
Gupta V, Moradi O, Tyagi I, Agarwal S, Sadegh H, Shahryari-Ghoshekandi R, Makhlouf A, Goodarzi M, Garshasbi A. Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modification: A review. Critical Reviews in Environmental Science and Technology, 2016, 46(2): 93–118

DOI

50
Li Y H, Di Z, Ding J, Wu D, Luan Z, Zhu Y. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research, 2005, 39(4): 605–609

DOI

51
Imamoglu M, Tekir O. Removal of copper (II) and lead (II) ions from aqueous solutions by adsorption on activated carbon from a new precursor hazelnut husks. Desalination, 2008, 228(1-3): 108–113

DOI

52
Ihsanullah, Al-Khaldi F A, Abu-Sharkh B, Abulkibash A M, Qureshi M I, Laoui T, Atieh M A. Effect of acid modification on adsorption of hexavalent chromium (Cr (VI)) from aqueous solution by activated carbon and carbon nanotubes. Desalination and Water Treatment, 2016, 57(16): 7232–7244

DOI

53
Hasar H. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials, 2003, 97(1): 49–57

DOI

54
Kadirvelu K, Thamaraiselvi K, Namasivayam C. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology, 2001, 24(3): 497–505

DOI

55
Sekar M, Sakthi V, Rengaraj S. Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 2004, 279(2): 307–313

DOI

56
Shamsijazeyi H, Kaghazchi T. Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. Journal of Industrial and Engineering Chemistry, 2010, 16(5): 852–858

DOI

57
Goyal M, Bhagat M, Dhawan R. Removal of mercury from water by fixed bed activated carbon columns. Journal of Hazardous Materials, 2009, 171(1): 1009–1015

DOI

58
Di Natale F, Erto A, Lancia A, Musmarra D. Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. Journal of Hazardous Materials, 2011, 192(3): 1842–1850

DOI

59
Biškup B, Subotić B. Removal of heavy metal ions from solutions using zeolites. III. Influence of sodium ion concentration in the liquid phase on the kinetics of exchange processes between cadmium ions from solution and sodium ions from zeolite A. Separation Science and Technology, 2005, 39(4): 925–940

DOI

60
Bottero J Y, Rose J, Wiesner M R. Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management, 2006, 2(4): 391–395

DOI

61
Justi K C, Fávere V T, Laranjeira M C, Neves A, Peralta R A. Kinetics and equilibrium adsorption of Cu (II), Cd (II), and Ni (II) ions by chitosan functionalized with 2 [-bis-(pyridylmethyl) aminomethyl]-4-methyl-6-formylphenol. Journal of Colloid and Interface Science, 2005, 291(2): 369–374

DOI

62
Ngah W W, Teong L, Hanafiah M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011, 83(4): 1446–1456

DOI

63
Hawari A H, Mulligan C N. Biosorption of lead (II), cadmium (II), copper (II) and nickel (II) by anaerobic granular biomass. Bioresource Technology, 2006, 97(4): 692–700

DOI

64
Brown P, Jefcoat I A, Parrish D, Gill S, Graham E. Evaluation of the adsorptive capacity of peanut hull pellets for heavy metals in solution. Advances in Environmental Research, 2000, 4(1): 19–29

DOI

65
Diniz C V, Doyle F M, Ciminelli V S. Effect of pH on the adsorption of selected heavy metal ions from concentrated chloride solutions by the chelating resin Dowex M-4195. Separation Science and Technology, 2002, 37(14): 3169–3185

DOI

66
Yavuz Ö, Altunkaynak Y, Güzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite. Water Research, 2003, 37(4): 948–952

DOI

67
Kim E J, Lee C S, Chang Y Y, Chang Y S. Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Applied Materials & Interfaces, 2013, 5(19): 9628–9634

DOI

68
Ekmekyapar F, Aslan A, Bayhan Y K, Cakici A. Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. Journal of Hazardous Materials, 2006, 137(1): 293–298

DOI

69
Ekmekyapar F, Aslan A, Bayhan Y, Cakici A. Biosorption of Pb (II) by nonliving lichen biomass of Cladonia rangiformis Hoffm. International Journal of Environmental of Research, 2012, 6(2): 417–424

70
Li Q, Wu S, Liu G, Liao X, Deng X, Sun D, Hu Y, Huang Y. Simultaneous biosorption of cadmium (II) and lead (II) ions by pretreated biomass of Phanerochaete chrysosporium. Separation and Purification Technology, 2004, 34(1): 135–142

DOI

71
Ho Y, McKay G. The sorption of lead (II) ions on peat. Water Research, 1999, 33(2): 578–584

DOI

72
Fiol N, Villaescusa I, Martínez M, Miralles N, Poch J, Serarols J. Sorption of Pb (II), Ni (II), Cu (II) and Cd (II) from aqueous solution by olive stone waste. Separation and Purification Technology, 2006, 50(1): 132–140

DOI

73
Karnitz O Jr, Gurgel L V A, De Melo J C P, Botaro V R, Melo T M S, de Freitas Gil R P, Gil L F. Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology, 2007, 98(6): 1291–1297

DOI

74
An H, Park B, Kim D. Crab shell for the removal of heavy metals from aqueous solution. Water Research, 2001, 35(15): 3551–3556

DOI

75
Huang J, Li Y, Cao Y, Peng F, Cao Y, Shao Q, Liu H, Guo Z. Hexavalent chromium removal over magnetic carbon nanoadsorbent: Synergistic effect of fluorine and nitrogen Co-doping. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(27): 13062–13074

DOI

76
Gong K, Hu Q, Yao L, Li M, Sun D, Shao Q, Qiu B, Guo Z. Ultrasonic pretreated sludge derived stable magnetic active carbon for Cr (VI) removal from wastewater. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7283–7291

DOI

77
Gong K, Hu Q, Xiao Y, Cheng X, Liu H, Wang N, Qiu B, Guo Z. Triple layered core–shell ZVI@ carbon@ polyaniline composite enhanced electron utilization in Cr (VI) reduction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(24): 11119–11128

DOI

78
Wang Y P, Zhou P, Luo S Z, Liao X P, Wang B, Shao Q, Guo X, Guo Z. Controllable synthesis of monolayer poly (acrylic acid) on channel surface of mesoporous alumina for Pb (II) adsorption. Langmuir, 2018, 34(26): 7859–7868

DOI

79
Huang J, Cao Y, Shao Q, Peng X, Guo Z. Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: Morphology dependence of fibrillar vs. particulate structures. Industrial & Engineering Chemistry Research, 2017, 56(38): 10689–10701

DOI

80
Wang Y P, Zhou P, Luo S Z, Guo S, Lin J, Shao Q, Guo X, Liu Z, Shen J, Wang B, Guo Z. In situ polymerized poly (acrylic acid)/alumina nanocomposites for Pb2+ adsorption. Advances in Polymer Technology, 2018, doi: https://doi.org/10.1002/adv.21969

81
Ma Y, Lv L, Guo Y, Fu Y, Shao Q, Wu T, Guo S, Sun K, Guo X, Wujcik E K, Guo Z. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions. Polymer, 2017, 128: 12–23

DOI

82
Abdel G. H H, Ali G A, Fouad O A, Makhlouf S A. Enhancement of adsorption efficiency of methylene blue on Co3O4/SiO2 nanocomposite. Desalination and Water Treatment, 2015, 53(11): 2980–2989

DOI

83
Arias M, Barral M, Mejuto J. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids. Chemosphere, 2002, 48(10): 1081–1088

DOI

84
Rao M M, Ramesh A, Rao G P C, Seshaiah K. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls. Journal of Hazardous Materials, 2006, 129(1): 123–129

85
Cao C Y, Cui Z M, Chen C Q, Song W G, Cai W. Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. Journal of Physical Chemistry C, 2010, 114(21): 9865–9870

DOI

86
Nakamoto K, Ohshiro M, Kobayashi T. Mordenite zeolite-Polyethersulfone composite fibers developed for decontamination of heavy metal ions. Journal of Environmental Chemical Engineering, 2017, 5(1): 513–525

DOI

87
Mudasir M, Karelius K, Aprilita N H, Wahyuni E T. Adsorption of mercury (II) on dithizone-immobilized natural zeolite. Journal of Environmental Chemical Engineering, 2016, 4(2): 1839–1849

DOI

88
Nguyen T C, Loganathan P, Nguyen T V, Vigneswaran S, Kandasamy J, Naidu R. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal, 2015, 270: 393–404

DOI

89
Ren X, Chen C, Nagatsu M, Wang X. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chemical Engineering Journal, 2011, 170(2): 395–410

DOI

90
Yang S T, Wang X, Jia G, Gu Y, Wang T, Nie H, Ge C, Wang H, Liu Y. Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicology Letters, 2008, 181(3): 182–189

DOI

91
Qin L, Huang Q, Wei Z, Wang L, Wang Z. The influence of hydroxyl-functionalized multi-walled carbon nanotubes and pH levels on the toxicity of lead to daphnia magna. Environmental Toxicology and Pharmacology, 2014, 38(1): 199–204

DOI

92
Hu C, Zhang L, Wang W, Cui Y, Li M. Evaluation of the combined toxicity of multi-walled carbon nanotubes and sodium pentachlorophenate on the earthworm Eisenia fetida using avoidance bioassay and comet assay. Soil Biology & Biochemistry, 2014, 70: 123–130

DOI

93
Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu Y. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon, 2007, 45(7): 1419–1424

DOI

94
Alagappan P N, Heimann J, Morrow L, Andreoli E, Barron A R. Easily regenerated readily deployable absorbent for heavy metal removal from contaminated water. Scientific Reports, 2017, 7(1): 6682

DOI

95
Wang T, Weissman J, Ramesh G, Varadarajan R, Benemann J. Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 1996, 57(5): 779–786

DOI

96
Bhattacharya K, Mukherjee S P, Gallud A, Burkert S C, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. Nanomedicine; Nanotechnology, Biology, and Medicine, 2016, 12(2): 333–351

DOI

97
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58

DOI

98
Sadegh H, Ali G A, Gupta V K, Makhlouf A S H, Shahryari-ghoshekandi R, Nadagouda M N, Sillanpää M, Megiel E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. Journal of Nanostructure in Chemistry, 2017, 7(1): 1–14

DOI

99
Wiesner M, Bottero J Y. Environmental Nanotechnology. New York: McGraw-Hill Professional Publishing, 2007

100
Khan Z H, Husain M. Carbon nanotube and its possible applications. Indian Journal of Engineering and Materials Sciences, 2005, 12(6): 529–551

101
Sun K, Xie P, Wang Z, Su T, Shao Q, Ryu J, Zhang X, Guo J, Shankar A, Li J, Fan R, Cao D, Guo Z. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer, 2017, 125: 50–57

DOI

102
Luo Q, Ma H, Hao F, Hou Q, Ren J, Wu L, Yao Z, Zhou Y, Wang N, Jiang K, Lin H, Guo Z. Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Advanced Functional Materials, 2017, 27(42): 1703068

DOI

103
Wu Z, Gao S, Chen L, Jiang D, Shao Q, Zhang B, Zhai Z, Wang C, Zhao M, Ma Y, Zhang X, Weng L, Zhang M, Guo Z. Electrically insulated epoxy nanocomposites reinforced with synergistic core–shell SiO2@ MWCNTs and montmorillonite bifillers. Macromolecular Chemistry and Physics, 2017, 218(23): 1700357

DOI

104
Zhang K, Li G H, Feng L M, Wang N, Guo J, Sun K, Yu K X, Zeng J B, Li T, Guo Z, Wang M. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly (L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(36): 9359–9369

DOI

105
Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z. Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Applied Materials & Interfaces, 2016, 8(22): 14150–14159

DOI

106
He Y, Yang S, Liu H, Shao Q, Chen Q, Lu C, Jiang Y, Liu C, Guo Z. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties. Journal of Colloid and Interface Science, 2018, 517: 40–51

DOI

107
Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G, Liu C, Shen C, Song H, Guo Z. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: Reduced graphene oxide or carbon nanotubes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2017, 5(9): 2318–2328

DOI

108
Li Y, Zhou B, Zheng G, Liu X, Li T, Yan C, Cheng C, Dai K, Liu C, Shen C, Guo Z. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(9): 2258–2269

DOI

109
Zhou B, Li Y, Dai K, Zheng G, Liu C, Ma Y, Zhang J X, Wang N, Shen C, Guo Z. Continuously fabricated transparent conductive polycarbonate/carbon nanotube nanocomposite film for switchable thermochromic applications. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2018, 6(31): 8360–8371

DOI

110
Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q, Li J, Wang N, Guo Z. Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochimica Acta, 2018, 260: 65–72

DOI

111
Zhao M, Meng L, Ma L, Ma L, Yang X, Huang Y, Ryu J E, Shankar A, Li T, Yan C, Guo Z. Layer-by-layer grafting CNTs onto carbon fibers surface for enhancing the interfacial properties of epoxy resin composites. Composites Science and Technology, 2018, 154: 28–36

DOI

112
Zheng F, Baldwin D L, Fifield L S, Anheier N C, Aardahl C L, Grate J W. Single-walled carbon nanotube paper as a sorbent for organic vapor preconcentration. Analytical Chemistry, 2006, 78(7): 2442–2446

DOI

113
Zhou Q, Wang W, Xiao J. Preconcentration and determination of nicosulfuron, thifensulfuron-methyl and metsulfuron-methyl in water samples using carbon nanotubes packed cartridge in combination with high performance liquid chromatography. Analytica Chimica Acta, 2006, 559(2): 200–206

DOI

114
Liang P, Ding Q, Song F. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. Journal of Separation Science, 2005, 28(17): 2339–2343

DOI

115
Liang P, Liu Y, Guo L, Zeng J, Lu H. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2004, 19(11): 1489–1492

DOI

116
Li Y H, Wang S, Luan Z, Ding J, Xu C, Wu D. Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41(5): 1057–1062

DOI

117
Tavallali H, Fakhraee V. Preconcentration and determination of trace amounts of Cd2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. International Journal of Chemtech Research, 2011, 3(3): 1628–1634

118
Pu Y, Yang X, Zheng H, Wang D, Su Y, He J. Adsorption and desorption of thallium (I) on multiwalled carbon nanotubes. Chemical Engineering Journal, 2013, 219: 403–410

DOI

119
Tavallali H. Preconcentration and determination of trace amounts of Ag+ and Pb2+ using multiwalled carbon nanotubes by solid phase extraction-flame atomic absorption spectrometry. International Journal of Chemtech Research, 2013, 5(1): 105–108

120
Ouyang M, Huang J L, Lieber C M. One-dimensional energy dispersion of single-walled carbon nanotubes by resonant electron scattering. Physical Review Letters, 2002, 88(6): 066804

DOI

121
Wan X, Dong J, Xing D. Optical properties of carbon nanotubes. Physical Review. B, 1998, 58(11): 6756–6759

DOI

122
Chen C, Wang X. Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research, 2006, 45(26): 9144–9149

DOI

123
Al-Hakami S M, Khalil A B, Laoui T, Atieh M A. Fast disinfection of Escherichia coli bacteria using carbon nanotubes interaction with microwave radiation. Bioinorganic Chemistry and Applications, 2013, 2013: 1–9

DOI

124
Hou P X, Liu C, Cheng H M. Purification of carbon nanotubes. Carbon, 2008, 46(15): 2003–2025

DOI

125
Ngo C L, Le Q T, Ngo T T, Nguyen D N, Vu M T. Surface modification and functionalization of carbon nanotube with some organic compounds. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2013, 4(3): 035017

126
Ouni L, Mirzaei M, Ashtari P, Ramazani A, Rahimi M, Bolourinovin F. Isocyanate functionalized multiwalled carbon nanotubes for separation of lead from cyclotron production of thallium-201. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 633–643

DOI

127
Huang Y Y, Terentjev E M. Dispersion of carbon nanotubes: Mixing, sonication, stabilization, and composite properties. Polymers, 2012, 4(1): 275–295

DOI

128
Tasis D, Tagmatarchis N, Bianco A, Prato M. Chemistry of carbon nanotubes. Chemical Reviews, 2006, 106(3): 1105–1136

DOI

129
Popuri S R, Frederick R, Chang C Y, Fang S S, Wang C C, Lee L C. Removal of copper (II) ions from aqueous solutions onto chitosan/carbon nanotubes composite sorbent. Desalination and Water Treatment, 2014, 52(4-6): 691–701

DOI

130
Koh B, Cheng W. Mechanisms of carbon nanotube aggregation and the reversion of carbon nanotube aggregates in aqueous medium. Langmuir, 2014, 30(36): 10899–10909

DOI

131
Es’haghi Z, Golsefidi M A, Saify A, Tanha A A, Rezaeifar Z, Alian-Nezhadi Z. Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: A novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance liquid chromatography. Journal of Chromatography. A, 2010, 1217(17): 2768–2775

DOI

132
Fu L, Yu A. Carbon nanotubes based thin films: Fabrication, characterization and applications. Reviews on Advanced Materials Science, 2014, 36: 40–61

133
Chen C, Liang B, Ogino A, Wang X, Nagatsu M. Oxygen functionalization of multiwall carbon nanotubes by microwave-excited surface-wave plasma treatment. Journal of Physical Chemistry C, 2009, 113(18): 7659–7665

DOI

134
Nair L G, Mahapatra A S, Gomathi N, Joseph K, Neogi S, Nair C R. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube. Applied Surface Science, 2015, 340: 64–71

DOI

135
Mishra P, Islam S. Surface modification of MWCNTs by O2 plasma treatment and its exposure time dependent analysis by SEM, TEM and vibrational spectroscopy. Superlattices and Microstructures, 2013, 64: 399–407

DOI

136
Saka C. Overview on the surface functionalization mechanism and determination of surface functional groups of plasma treated carbon nanotubes. Critical Reviews in Analytical Chemistry, 2018, 48(1): 1–14

DOI

137
Babu D J, Yadav S, Heinlein T, Cherkashinin G, Schneider J J. Schneider Jr J. Carbon dioxide plasma as a versatile medium for purification and functionalization of vertically aligned carbon nanotubes. Journal of Physical Chemistry C, 2014, 118(22): 12028–12034

DOI

138
Talapatra S, Zambano A, Weber S, Migone A. Gases do not adsorb on the interstitial channels of closed-ended single-walled carbon nanotube bundles. Physical Review Letters, 2000, 85(1): 138–141

DOI

139
Byl O, Kondratyuk P, Forth S T, FitzGerald S A, Chen L, Johnson J K, Yates J T. Adsorption of CF4 on the internal and external surfaces of opened single-walled carbon nanotubes: A vibrational spectroscopy study. Journal of the American Chemical Society, 2003, 125(19): 5889–5896

DOI

140
Muris M, Dupont-Pavlovsky N, Bienfait M, Zeppenfeld P. Where are the molecules adsorbed on single-walled nanotubes? Surface Science, 2001, 492(1): 67–74

DOI

141
Fujiwara A, Ishii K, Suematsu H, Kataura H, Maniwa Y, Suzuki S, Achiba Y. Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letters, 2001, 336(3): 205–211

DOI

142
Muris M, Dufau N, Bienfait M, Dupont-Pavlovsky N, Grillet Y, Palmari J. Methane and krypton adsorption on single-walled carbon nanotubes. Langmuir, 2000, 16(17): 7019–7022

DOI

143
Rawat D S, Calbi M M, Migone A D. Equilibration time: Kinetics of gas adsorption on closed-and open-ended single-walled carbon nanotubes. Journal of Physical Chemistry C, 2007, 111(35): 12980–12986

DOI

144
Wang H, Zhou A, Peng F, Yu H, Chen L. Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb (II) in aqueous solution. Materials Science and Engineering A, 2007, 466(1): 201–206

DOI

145
Ulbricht H, Kriebel J, Moos G, Hertel T. Desorption kinetics and interaction of Xe with single-wall carbon nanotube bundles. Chemical Physics Letters, 2002, 363(3): 252–260

DOI

146
Babaa M, Stepanek I, Masenelli-Varlot K, Dupont-Pavlovsky N, McRae E, Bernier P. Opening of single-walled carbon nanotubes: Evidence given by krypton and xenon adsorption. Surface Science, 2003, 531(1): 86–92

DOI

147
Kosa S A, Al-Zhrani G, Salam M A. Removal of heavy metals from aqueous solutions by multi-walled carbon nanotubes modified with 8-hydroxyquinoline. Chemical Engineering Journal, 2012, 181: 159–168

DOI

148
Chandra V, Park J, Chun Y, Lee J W, Hwang I C, Kim K S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano, 2010, 4(7): 3979–3986

DOI

149
Saeidi N, Parvini M, Niavarani Z. High surface area and mesoporous graphene/activated carbon composite for adsorption of Pb (II) from wastewater. Journal of Environmental Chemical Engineering, 2015, 3(4): 2697–2706

DOI

150
Ansari M O, Kumar R, Ansari S A, Ansari S P, Barakat M, Alshahrie A, Cho M H. Anion selective pTSA doped polyaniline@graphene oxide-multiwalled carbon nanotube composite for Cr (VI) and Congo red adsorption. Journal of Colloid and Interface Science, 2017, 496: 407–415

DOI

151
Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Super high removal capacities of heavy metals (Pb2+ and Cu2+) using CNT dendrimer. Journal of Hazardous Materials, 2017, 336: 146–157

DOI

152
Tofighy M A, Mohammadi T. Copper ions removal from aqueous solutions using acid-chitosan functionalized carbon nanotubes sheets. Desalination and Water Treatment, 2016, 57(33): 15384–15396

DOI

153
Kanthapazham R, Ayyavu C, Mahendiradas D. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalination and Water Treatment, 2016, 57(36): 16871–16885

154
Lasheen M, El-Sherif I Y, Sabry D Y, El-Wakeel S, El-Shahat M. Removal of heavy metals from aqueous solution by multiwalled carbon nanotubes: Equilibrium, isotherms, and kinetics. Desalination and Water Treatment, 2015, 53(13): 3521–3530

DOI

155
Jiang L, Yu H, Zhou X, Hou X, Zou Z, Li S, Li C, Yao X. Preparation, characterization, and adsorption properties of magnetic multi-walled carbon nanotubes for simultaneous removal of lead (II) and zinc (II) from aqueous solutions. Desalination and Water Treatment, 2016, 57(39): 18446–18462

DOI

156
Alimohammady M, Jahangiri M, Kiani F, Tahermansouri H. A new modified MWCNTs with 3-aminopyrazole as a nanoadsorbent for Cd(II) removal from aqueous solutions. Journal of Environmental Chemical Engineering, 2017, 5(4): 3405–3417

DOI

157
Mubarak N, Alicia R, Abdullah E, Sahu J, Haslija A A, Tan J. Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. Journal of Environmental Chemical Engineering, 2013, 1(3): 486–495

DOI

158
Park W K, Yoon Y, Kim S, Yoo S, Do Y, Kang J W, Yoon D H, Yang W S. Feasible water flow filter with facilely functionalized Fe3O4-non-oxidative graphene/CNT composites for arsenic removal. Journal of Environmental Chemical Engineering, 2016, 4(3): 3246–3252

DOI

159
Varghese S S, Varghese S H, Swaminathan S, Singh K K, Mittal V. Two-dimensional materials for sensing: Graphene and beyond. Electronics (Basel), 2015, 4(3): 651–687

DOI

160
Mu C, Song J, Wang B, Zhang C, Xiang J, Wen F, Liu Z. Two-dimensional materials and one-dimensional carbon nanotube composites for microwave absorption. Nanotechnology, 2017, 29(2): 025704

DOI

161
Saadat S, Karimi-Jashni A, Doroodmand M M. Synthesis and characterization of novel single-walled carbon nanotubes-doped walnut shell composite and its adsorption performance for lead in aqueous solutions. Journal of Environmental Chemical Engineering, 2014, 2(4): 2059–2067

DOI

162
Sankararamakrishnan N, Gupta A, Vidyarthi S R. Enhanced arsenic removal at neutral pH using functionalized multiwalled carbon nanotubes. Journal of Environmental Chemical Engineering, 2014, 2(2): 802–810

DOI

163
Sobhanardakani S, Zandipak R, Cheraghi M. Adsorption of Cu2+ ions from aqueous solutions using oxidized multi-walled carbon nanotubes. Avicenna Journal of Environmental Health Engineering, 2015, 2(1): e790

DOI

164
AlOmar M K, Alsaadi M A, Hayyan M, Akib S, Hashim M A. Functionalization of CNTs surface with phosphonuim based deep eutectic solvents for arsenic removal from water. Applied Surface Science, 2016, 389: 216–226

DOI

165
Hayati B, Maleki A, Najafi F, Daraei H, Gharibi F, McKay G. Synthesis and characterization of PAMAM/CNT nanocomposite as a super-capacity adsorbent for heavy metal (Ni2+, Zn2+, As3+, Co2+) removal from wastewater. Journal of Molecular Liquids, 2016, 224(Part A): 1032–1040

166
Asadollahi N, Yavari R, Ghanadzadeh H. Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3): 2445–2455

167
Al Hamouz O C S, Adelabu I O, Saleh T A. Novel cross-linked melamine based polyamine/CNT composites for lead ions removal. Journal of Environmental Management, 2017, 192: 163–170

DOI

168
Yang W, Ding P, Zhou L, Yu J, Chen X, Jiao F. Preparation of diamine modified mesoporous silica on multi-walled carbon nanotubes for the adsorption of heavy metals in aqueous solution. Applied Surface Science, 2013, 282: 38–45

DOI

169
Bandaru N M, Reta N, Dalal H, Ellis A V, Shapter J, Voelcker N H. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. Journal of Hazardous Materials, 2013, 261: 534–541

DOI

170
Sankararamakrishnan N, Jaiswal M, Verma N. Composite nanofloral clusters of carbon nanotubes and activated alumina: An efficient sorbent for heavy metal removal. Chemical Engineering Journal, 2014, 235: 1–9

DOI

171
Saadi R, Saadi Z, Fazaeli R, Fard N E. Monolayer and multilayer adsorption isotherm models for sorption from aqueous media. Korean Journal of Chemical Engineering, 2015, 32(5): 787–799

DOI

172
Moghaddam H K, Pakizeh M. Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. Journal of Industrial and Engineering Chemistry, 2015, 21: 221–229

DOI

173
Dada A, Olalekan A, Olatunya A, Dada O. Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 2012, 3(1): 38–45

DOI

174
Veličković Z S, Marinković A D, Bajić Z J, Marković J M, Perić-Grujić A A, Uskokovic P S, Ristic M D. Oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes for the separation of low concentration arsenate from water. Separation Science and Technology, 2013, 48(13): 2047–2058

DOI

175
Ren X, Li J, Tan X, Wang X. Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Transactions (Cambridge, England), 2013, 42(15): 5266–5274

DOI

176
Jung C, Heo J, Han J, Her N, Lee S J, Oh J, Ryu J, Yoon Y. Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes. Separation and Purification Technology, 2013, 106: 63–71

DOI

177
Liu Z, Chen L, Zhang Z, Li Y, Dong Y, Sun Y. Synthesis of multi-walled carbon nanotube–hydroxyapatite composites and its application in the sorption of Co (II) from aqueous solutions. Journal of Molecular Liquids, 2013, 179: 46–53

DOI

178
Pillay K, Cukrowska E, Coville N. Improved uptake of mercury by sulphur-containing carbon nanotubes. Microchemical Journal, 2013, 108: 124–130

DOI

179
Ramana D V, Yu J S, Seshaiah K. Silver nanoparticles deposited multiwalled carbon nanotubes for removal of Cu (II) and Cd (II) from water: Surface, kinetic, equilibrium, and thermal adsorption properties. Chemical Engineering Journal, 2013, 223: 806–815

DOI

180
Chen B, Zhu Z, Ma J, Qiu Y, Chen J. Surfactant assisted Ce-Fe mixed oxide decorated multiwalled carbon nanotubes and their arsenic adsorption performance. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(37): 11355–11367

DOI

181
Gupta A, Vidyarthi S, Sankararamakrishnan N. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2014, 274: 132–144

DOI

182
Hadavifar M, Bahramifar N, Younesi H, Li Q. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chemical Engineering Journal, 2014, 237: 217–228

DOI

183
Ge Y, Li Z, Xiao D, Xiong P, Ye N. Sulfonated multi-walled carbon nanotubes for the removal of copper (II) from aqueous solutions. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1765–1771

DOI

184
Chen P H, Hsu C F, Tsai D D W, Lu Y M, Huang W J. Adsorption of mercury from water by modified multi-walled carbon nanotubes: Adsorption behaviour and interference resistance by coexisting anions. Environmental Technology, 2014, 35(15): 1935–1944

DOI

185
Liang J, Liu J, Yuan X, Dong H, Zeng G, Wu H, Wang H, Liu J, Hua S, Zhang S, Yu Z, He X, He Y. Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chemical Engineering Journal, 2015, 273: 101–110

DOI

186
Kumar A S K, Jiang S J, Tseng W L. Effective adsorption of chromium (VI)/Cr (III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 7044–7057

DOI

187
Al-Khaldi F A, Abu-Sharkh B, Abulkibash A M, Atieh M A. Cadmium removal by activated carbon, carbon nanotubes, carbon nanofibers, and carbon fly ash: A comparative study. Desalination and Water Treatment, 2015, 53(5): 1417–1429

188
Ma X, Yang S T, Tang H, Liu Y, Wang H. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. Journal of Colloid and Interface Science, 2015, 448: 347–355

DOI

189
Al Khaldi F A, Abusharkh B, Khaled M, Atieh M A, Nasser M, Saleh T A, Agarwal S, Tyagi I, Gupta V K. Adsorptive removal of cadmium (II) ions from liquid phase using acid modified carbon-based adsorbents. Journal of Molecular Liquids, 2015, 204: 255–263

DOI

190
Yaghmaeian K, Mashizi R K, Nasseri S, Mahvi A H, Alimohammadi M, Nazmara S. Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. Journal of Environmental Health Science & Engineering, 2015, 13(1): 55

DOI

191
Zhao X H, Jiao F P, Yu J G, Xi Y, Jiang X Y, Chen X Q. Removal of Cu (II) from aqueous solutions by tartaric acid modified multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2015, 476: 35–41

DOI

192
Karkeh-abadi F, Saber-Samandari S. The impact of functionalized CNT in the network of sodium alginate-based nanocomposite beads on the removal of Co (II) ions from aqueous solutions. Journal of Hazardous Materials, 2016, 312: 224–233

DOI

193
Jiang L, Li S, Yu H, Zou Z, Hou X, Shen F, Li C, Yao X. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Applied Surface Science, 2016, 369: 398–413

DOI

194
Diva T N, Zare K, Taleshi F, Yousefi M. Synthesis, characterization, and application of nickel oxide/CNT nanocomposites to remove Pb2+ from aqueous solution. Journal of Nanostructure in Chemistry, 2017, 7(3): 273–281

DOI

195
Farghali A, Tawab H A, Moaty S A, Khaled R. Functionalization of acidified multi-walled carbon nanotubes for removal of heavy metals in aqueous solutions. Journal of Nanostructure in Chemistry, 2017, 7(2): 101–111

DOI

196
Zhang D, Yin Y, Liu J. Removal of Hg2+ and methylmercury in waters by functionalized multi-walled carbon nanotubes: Adsorption behavior and the impacts of some environmentally relevant factors. Chemical Speciation and Bioavailability, 2017, 29(1): 161–169

DOI

197
Elmi F, Hosseini T, Taleshi M S, Taleshi F. Kinetic and thermodynamic investigation into the lead adsorption process from wastewater through magnetic nanocomposite Fe3O4/CNT. Nanotechnology for Environmental Engineering, 2017, 2(1): 13

DOI

198
Abdel Ghani N T, El Chaghaby G A, Helal F S. Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. Journal of Advanced Research, 2015, 6(3): 405–415

DOI

199
Khedr S, Shouman M, Fathy N, Attia A. Effect of physical and chemical activation on the removal of hexavalent chromium ions using palm tree branches. ISRN Environmental Chemistry, 2014, 2014: 1–11

DOI

200
Dawodu F A, Akpomie K G. Simultaneous adsorption of Ni (II) and Mn (II) ions from aqueous solution unto a Nigerian kaolinite clay. Journal of Materials Research and Technology, 2014, 3(2): 129–141

DOI

201
Mubarak N, Sahu J, Abdullah E, Jayakumar N. Removal of heavy metals from wastewater using carbon nanotubes. Separation and Purification Reviews, 2014, 43(4): 311–338

DOI

202
Rao G P, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Separation and Purification Technology, 2007, 58(1): 224–231

DOI

Outlines

/