REVIEW ARTICLE

Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing

  • Qing-Xi Wu 1,2 ,
  • Yi-Xin Guan 1 ,
  • Shan-Jing Yao , 1
Expand
  • 1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • 2. School of Life Sciences, Anhui University; Anhui Key Laboratory of Modern Biomanufacturing; Key Laboratory of Eco-engineering and Biotechnology of Anhui Province, Hefei 230601, China

Received date: 01 Nov 2017

Accepted date: 12 Mar 2018

Published date: 25 Feb 2019

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS’s physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers’ designing, such as micro-cell-carriers, micro-drug-carriers, etc., are presented.

Cite this article

Qing-Xi Wu , Yi-Xin Guan , Shan-Jing Yao . Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(1) : 46 -58 . DOI: 10.1007/s11705-018-1723-x

Acknowledgments

This work was funded by China Postdoctoral Science Foundation (No. 2017M611998), the National Natural Science Foundation of China (Grant Nos. 21606002 and 21576233), the Natural Science Foundation of Anhui Province (CN) (No. 1708085QC64), the Doctoral Research Start-up Fund of Anhui University (J01001319), and the Undergraduate Research Training Programs for Innovation (Nos. KYXL2017036, 201710357034 and 201710357268).
1
Klemm D, Heublein B, Fink H P, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393

DOI

2
Goh C S, Tan K T, Lee K T, Bhatia S. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 2010, 101(13): 4834–4841

DOI

3
Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angewandte Chemie International Edition, 2012, 51(35): 8762–8767

DOI

4
Chang C, Zhang L. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 2011, 84(1): 40– 53

DOI

5
Kubo Y, Nakajima O, Ogawa K. EP Patent, 2811544A1, 2014-12-10

6
Zhang L X, Liu Z H, Cui G L, Chen L Q. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164

DOI

7
Kadokawa J. Precision polysaccharide synthesis catalyzed by enzymes. Chemical Reviews, 2011, 111(7): 4308–4345

DOI

8
Andrade D, Mendonca M H, Helm C V, Magalhaes W, de Muniz G, Kestur S G. Assessment of nano cellulose from peach palm residue as potential food additive: Part II: Preliminary studies. Journal of Food Science and Technology-Mysore, 2015, 52(9): 5641–5650

DOI

9
Gomez H C, Serpa A, Velasquez-Cock J, Ganan P, Castro C, Velez L, Zuluaga R. Vegetable nanocellulose in food science: A review. Food Hydrocolloids, 2016, 57: 178–186

DOI

10
Garcia-Zapateiro L A, Valencia C, Franco J M. Formulation of lubricating greases from renewable basestocks and thickener agents: A rheological approach. Industrial Crops and Products, 2014, 54: 115–121

DOI

11
Al-Ibraheemi Z, Anuar M S, Taip F S, Amin M, Tahir S M, Mahdi A B. Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Particulate Science and Technology, 2013, 31(6): 561–567

DOI

12
Ojala J, Sirvio J A, Liimatainen H. Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil-water emulsion stabilizers. Chemical Engineering Journal, 2016, 288: 312–320

DOI

13
Oun A A, Rhim J W. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 2016, 150: 187–200

DOI

14
Ma X, Lv M, Anderson D P, Chang P R. Natural polysaccharide composites based on modified cellulose spheres and plasticized chitosan matrix. Food Hydrocolloids, 2017, 66: 276–285

DOI

15
Schweiger R G. Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydrate Research, 1972, 21(2): 219–228

DOI

16
Brewer R J, Tenn K. US Patent, 4480091, 1984-10-30

17
Usher T C, Patel N, Tele C G. US Patent, 5378828, 1995-01-03

18
Hettrich K, Wagenknecht W, Volkert B, Fischer S. New possibilities of the acetosulfation of cellulose. Macromolecular Symposia, 2008, 262(1): 162–169

DOI

19
Sparrow D B, Powers W R. US Patent, 2862922, 1958-12-02

20
Yao S J. An improved process for the preparation of sodium cellulose sulphate. Chemical Engineering Journal, 2000, 78(2-3): 199–204

DOI

21
Yao S J, Lin D Q, Fang L. CN Patent, 101274964B, 2010-11-03

22
Yao S J. Verfahrenstechnische auslegung einer anlage fuer die natrium-cellulosesulfatherstellung zur immobiliserung von biokatalysatoren. Dissertation for the Doctoral Degree. Berlin: Technical University of Berlin, 1996, 57–90

23
Anderson R A, Zaneveld L J D, Usher T C. US Patent, 6063773, 2000-05-16

24
Okajima K, Kamide K, Matsui T. EP Patent, 0053473A1, 1981-11-25

25
Yoshida T. Synthesis of polysaccharides having specific biological activities. Progress in Polymer Science, 2001, 26(3): 379–441

DOI

26
Yoshida T, Kang B W, Hattori K, Mimura T, Kaneko Y, Nakashima H, Premanathan M, Aragaki R, Yamamoto N, Uryu T. Anti-HIV activity of sulfonated arabinofuranan and xylofuranan. Carbohydrate Polymers, 2001, 42(2): 141–150

DOI

27
Anderson R A, Feathergill K A, Diao X H, Cooper M D, Kirkpatrick R, Herold B C, Doncel G F, Chany C J, Waller D P, Rencher W F, Preclinical evaluation of sodium cellulose sulfate (Ushercell) as a contraceptive antimicrobial agent. Journal of Andrology, 2002, 23(3): 426–438

28
Anderson R A, Feathergill K, Diao X H, Chany C II, Rencher W F, Zaneveld L, Waller D P. Contraception by Ushercell (TM) (cellulose sulfate) in formulation: Duration of effect and dose effectiveness. Contraception, 2004, 70(5): 415–422

DOI

29
Zaneveld L J D, Anderson R A, Usher T C. US Patent, 7078392B2, 2006-07-18

30
Baleta A. Disappointment at failure of microbicide candidate. Lancet Infectious Diseases, 2008, 8(4): 221–221

DOI

31
Tao W, Richards C, Hamer D. Short communication—enhancement of HIV infection by cellulose sulfate. AIDS Research and Human Retroviruses, 2008, 24(7): 925–929

DOI

32
Pirrone V, Passic S, Wigdahl B, Krebs F. Clinical failures of select polyanionic microbicide candidates may be predicted by in vitro enhancement of HIV-1 infection. Antiviral Research, 2009, 82(2): A65–A66

DOI

33
Pirrone V, Wigdahl B, Krebs F C. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral Research, 2011, 90(3): 168–182

DOI

34
Agarwal H K, Kumar A, Doncel G F, Parang K. Synthesis, antiviral and contraceptive activities of nucleoside-sodium cellulose sulfate acetate and succinate conjugates. Bioorganic & Medicinal Chemistry Letters, 2010, 20(23): 6993–6997

DOI

35
Wang M J, Xie Y L, Zheng Q D, Yao S J. A novel, potential microflora-activated carrier for a colon-specific drug delivery system and its characteristics. Industrial & Engineering Chemistry Research, 2009, 48(11): 5276–5284

DOI

36
Zhu L Y, Lin D Q, Yao S J. Biodegradation of polyelectrolyte complex films composed of chitosan and sodium cellulose sulfate as the controllable release carrier. Carbohydrate Polymers, 2010, 82(2): 323–328

DOI

37
Rohowsky J, Heise K, Fischer S, Hettrich K. Synthesis and characterization of novel cellulose ether sulfates. Carbohydrate Polymers, 2016, 142: 56–62

DOI

38
Gericke M, Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides, 8-synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromolecular Bioscience, 2009, 9(4): 343–353

DOI

39
Wang M J. Study on NaCS used for vegetable capsule and colon-targeted drug delivery capsule. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2010, 29–38 (in Chinese)

40
Zhang K, Peschel D, Baeucker E, Groth T, Fischer S. Synthesis and characterisation of cellulose sulfates regarding the degrees of substitution, degrees of polymerisation and morphology. Carbohydrate Polymers, 2011, 83(4): 1659–1664

DOI

41
Chen G, Zhang B, Zhao J, Chen H. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohydrate Polymers, 2013, 95(1): 332–337

DOI

42
John A A, Subramanian A P, Vellayappan M V, Balaji A, Jaganathan S K, Mohandas H, Paramalinggam T, Supriyanto E, Yusof M. Review: Physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Advances, 2015, 5(49): 39232–39244

DOI

43
Mei L H, Yao S J. Cultivation and modelling of encapsulated Saccharomyces cerevisiae in NaCS-PDMDAAC polyelectrolyte complexes. Journal of Microencapsulation, 2002, 19(4): 397–405

DOI

44
Mei L H, Yao S J, Lin D Q, Cen P L, Zhu Z Q. Biocompatibility of NaCS and PDADMAC microcapsules with Bacillus thuringiensis. CIESC Journal, 1999, 50(5): 592–597

45
Mei L H, Lin D Q, Yao S J, Han Z X. Study on immobilization of bacillus thuringiensis by microencapsules of NaCS and PDADMAC. Journal of Zhejiang University (Engineering Science), 2000, 34(6): 694–695 (in Chinese)

46
Zhang J, Yao S J, Guan Y X. Preparation of macroporous sodium cellulose sulphate/poly(dimethyldiallylammonium chloride) capsules and their characteristics. Journal of Membrane Science, 2005, 255(1-2): 89–98

DOI

47
Dautzenberg H, Schuldt U, Grasnick G, Karle P, Muller P, Lohr M, Pelegrin M, Piechaczyk M, Rombs K V, Gunzburg W H, Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Annals of the New York Academy of Sciences, 1999, 875(1): 46–63

DOI

48
Salmons B, Gunzburg W H. Therapeutic application of cell microencapsulation in cancer. Berlin: Springer-Verlag Press, 2010, 92–103

49
Yildirimer L, Seifalian A M. Three-dimensional biomaterial degradation—material choice, design and extrinsic factor considerations. Biotechnology Advances, 2014, 32(5): 984–999

DOI

50
Macy J M, Farrand J R, Montgomery L. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Applied and Environmental Microbiology, 1982, 44(6): 1428–1434

51
Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiology Ecology, 2003, 46(1): 81–89

DOI

52
Wu Q X, Li M Z, Yao S J. Performances of NaCS-WSC protein drug microcapsules with different degree of substitution of NaCS using sodium polyphosphate as cross-linking agent. Cellulose (London, England), 2014, 21(3): 1897–1908

DOI

53
Zhu L Y. Study on colon-specific drug delivery carrier based on chitosan and sodium cellulose sulfate. Dissertation for the Doctoral Degree.Hangzhou: Zhejiang University, 2011, 20–24 (in Chinese)

54
Zhang K, Brendler E, Fischer S F T. Raman investigation of sodium cellulose sulfate. Cellulose (London, England), 2010, 17(2): 427–435

DOI

55
Wang M J, Yao S J. Determination of molecular weight of sodium cellulose sulfate by low angle laser light scattering. Chinese Journal of Process Engineering, 2009, 9(6): 1159–1163 (in Chinese)

56
Zhang Q L, Lin D Q, Yao S J. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydrate Polymers, 2015, 132: 311–322

DOI

57
Mei L H, Yao J T, Yao S J. Immobilized culture of Bacillus subtilis in NACS-PDMDAAC microcapsules for production of new anti-thrombus enzyme. CIESC Journal, 2000, 51(6): 814–817

58
Zhang Z R, Zheng Q D, Yao S J. Cultivation of encapsulated Monascus purpureus in NaCS-PDMDAAC capsules. Food and Fermentation Industries, 2003, 29(11): 1–4

59
Mei L H, Zhang X Z, Ai B Y, Sheng Q, Lin D Q, Yao S J, Zhu Z Q. Immobilized culture of Bacillus subtilis in SA/CS-CaCl2/PMCG microcapsule for production of nattokinase. CIESC Journal, 2004, 55(8): 1319–1323

60
Mei L H, Yang J L, Zhong C H, Lin D Q, Yao S J. Cultivation of Brevibacterium flavum in new microcapsule system and production of glutamic acid. Journal of Zhejiang University (Engineering Science), 2005, 39(9): 1400–1403 (in Chinese)

61
Ji Y Y, Yao S J, Zhang J, Guan Y X, Lin D Q. Cultivation of encapsulated C.valida for producing lipase in macro-porous NaCS-PDMDAAC microcapsules. CIESC Journal, 2005, 56(11): 2162–2165

62
Zhao Y N, Chen G, Yao S J. Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochemical Engineering Journal, 2006, 32(2): 93–99

DOI

63
Chen G, Zhao Y N, Huang H, Yao S J. 1,3-Propanediol production from glycerol by Klebsiella pneumoniae encapsulated in NACS/PDMDAAC capsules. CIESC Journal, 2006, 57(12): 2933–2937

64
Chen G, Zhao Y N, Yao S J, Fang B S. Production of 1,3-propanediol by co-culture of two immobilized microbes in series. Journal of Beijing University of Chemical Technology, 2007, 34(6): 640–644 (in Chinese)

65
Ma Q L, Lin D Q, Yao S J. Immobilization of mixed bacteria by microcapsulation for hydrogen production—a trial of pseudo “Cell Factory”. Chinese Journal of Biotechnology, 2010, 26(10): 1444–1450

66
Lohr M, Muller P, Karle P, Stange J, Mitzner S, Jesnowski R, Nizze H, Nebe B, Liebe S, Salmons B, Gunzburg W H. Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. Gene Therapy, 1998, 5(8): 1070–1078

DOI

67
Weber W, Rinderknecht M, Baba M, de Glutz F N, Aubel D, Fussenegger M. CellMAC: A novel technology for encapsulation of mammalian cells in cellulose sulfate/pDADMAC capsules assembled on a transient alginate/Ca2+ scaffold. Journal of Biotechnology, 2004, 114(3): 315–326

DOI

68
Stiegler P B, Stadlbauer V, Schaffellner S, Halwachs G, Lackner C, Hauser O, Iberer F, Tscheliessnigg K. Cryopreservation of insulin-producing cells microencapsulated in sodium cellulose sulfate. Transplantation Proceedings, 2006, 38(9): 3026–3030

DOI

69
Stiegler P, Matzi V, Pierer E, Hauser O, Schaffellner S, Renner H, Greilberger J, Aigner R, Maier A, Lackner C, Iberer F, Smolle-Jüttner F M, Tscheliessnigg K, Stadlbauer V. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation, 2010, 17(5): 379–390

DOI

70
Zeng X H, Danquah M K, Zheng C, Potumarthi R, Chen X D, Lu Y H. NaCS-PDMDAAC immobilized autotrophic cultivation of Chlorella sp. for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 2012, 187: 185–192

DOI

71
Wu Q X, Lin D Q, Yao S J. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Marine Drugs, 2014, 12(12): 6236–6253

DOI

72
Wu Q X, Yao S J. Novel NaCS-CS-PPS microcapsules as a potential enzyme-triggered release carrier for highly-loading 5-ASA. Colloids and Surfaces. B, Biointerfaces, 2013, 109: 147–153

DOI

73
Wu Q X, Zhang Q L, Lin D Q, Yao S J. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. International Journal of Pharmaceutics, 2013, 455(1-2): 124–131

DOI

74
Xie Y L, Wang M J, Yao S J. Layer-by-layer self-assembly complex membrane composed of sodium cellulose sulfate-chitosan. CIESC Journal, 2008, 59(11): 2910–2915

75
Xie Y L, Wang M J, Yao S J. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir, 2009, 25(16): 8999–9005

DOI

76
Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103

DOI

77
Wu Q X, Lin D Q, Yao S J. Fabrication and formation studies on single-walled CA/NaCS-WSC microcapsules. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59: 909–915

DOI

Outlines

/