Frontiers of Chemical Science and Engineering >
Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing
Received date: 01 Nov 2017
Accepted date: 12 Mar 2018
Published date: 25 Feb 2019
Copyright
Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS’s physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers’ designing, such as micro-cell-carriers, micro-drug-carriers, etc., are presented.
Qing-Xi Wu , Yi-Xin Guan , Shan-Jing Yao . Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing[J]. Frontiers of Chemical Science and Engineering, 2019 , 13(1) : 46 -58 . DOI: 10.1007/s11705-018-1723-x
1 |
Klemm D, Heublein B, Fink H P, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393
|
2 |
Goh C S, Tan K T, Lee K T, Bhatia S. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 2010, 101(13): 4834–4841
|
3 |
Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angewandte Chemie International Edition, 2012, 51(35): 8762–8767
|
4 |
Chang C, Zhang L. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 2011, 84(1): 40– 53
|
5 |
Kubo Y, Nakajima O, Ogawa K. EP Patent, 2811544A1, 2014-12-10
|
6 |
Zhang L X, Liu Z H, Cui G L, Chen L Q. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164
|
7 |
Kadokawa J. Precision polysaccharide synthesis catalyzed by enzymes. Chemical Reviews, 2011, 111(7): 4308–4345
|
8 |
Andrade D, Mendonca M H, Helm C V, Magalhaes W, de Muniz G, Kestur S G. Assessment of nano cellulose from peach palm residue as potential food additive: Part II: Preliminary studies. Journal of Food Science and Technology-Mysore, 2015, 52(9): 5641–5650
|
9 |
Gomez H C, Serpa A, Velasquez-Cock J, Ganan P, Castro C, Velez L, Zuluaga R. Vegetable nanocellulose in food science: A review. Food Hydrocolloids, 2016, 57: 178–186
|
10 |
Garcia-Zapateiro L A, Valencia C, Franco J M. Formulation of lubricating greases from renewable basestocks and thickener agents: A rheological approach. Industrial Crops and Products, 2014, 54: 115–121
|
11 |
Al-Ibraheemi Z, Anuar M S, Taip F S, Amin M, Tahir S M, Mahdi A B. Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Particulate Science and Technology, 2013, 31(6): 561–567
|
12 |
Ojala J, Sirvio J A, Liimatainen H. Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil-water emulsion stabilizers. Chemical Engineering Journal, 2016, 288: 312–320
|
13 |
Oun A A, Rhim J W. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 2016, 150: 187–200
|
14 |
Ma X, Lv M, Anderson D P, Chang P R. Natural polysaccharide composites based on modified cellulose spheres and plasticized chitosan matrix. Food Hydrocolloids, 2017, 66: 276–285
|
15 |
Schweiger R G. Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydrate Research, 1972, 21(2): 219–228
|
16 |
Brewer R J, Tenn K. US Patent, 4480091, 1984-10-30
|
17 |
Usher T C, Patel N, Tele C G. US Patent, 5378828, 1995-01-03
|
18 |
Hettrich K, Wagenknecht W, Volkert B, Fischer S. New possibilities of the acetosulfation of cellulose. Macromolecular Symposia, 2008, 262(1): 162–169
|
19 |
Sparrow D B, Powers W R. US Patent, 2862922, 1958-12-02
|
20 |
Yao S J. An improved process for the preparation of sodium cellulose sulphate. Chemical Engineering Journal, 2000, 78(2-3): 199–204
|
21 |
Yao S J, Lin D Q, Fang L. CN Patent, 101274964B, 2010-11-03
|
22 |
Yao S J. Verfahrenstechnische auslegung einer anlage fuer die natrium-cellulosesulfatherstellung zur immobiliserung von biokatalysatoren. Dissertation for the Doctoral Degree. Berlin: Technical University of Berlin, 1996, 57–90
|
23 |
Anderson R A, Zaneveld L J D, Usher T C. US Patent, 6063773, 2000-05-16
|
24 |
Okajima K, Kamide K, Matsui T. EP Patent, 0053473A1, 1981-11-25
|
25 |
Yoshida T. Synthesis of polysaccharides having specific biological activities. Progress in Polymer Science, 2001, 26(3): 379–441
|
26 |
Yoshida T, Kang B W, Hattori K, Mimura T, Kaneko Y, Nakashima H, Premanathan M, Aragaki R, Yamamoto N, Uryu T. Anti-HIV activity of sulfonated arabinofuranan and xylofuranan. Carbohydrate Polymers, 2001, 42(2): 141–150
|
27 |
Anderson R A, Feathergill K A, Diao X H, Cooper M D, Kirkpatrick R, Herold B C, Doncel G F, Chany C J, Waller D P, Rencher W F,
|
28 |
Anderson R A, Feathergill K, Diao X H, Chany C II, Rencher W F, Zaneveld L, Waller D P. Contraception by Ushercell (TM) (cellulose sulfate) in formulation: Duration of effect and dose effectiveness. Contraception, 2004, 70(5): 415–422
|
29 |
Zaneveld L J D, Anderson R A, Usher T C. US Patent, 7078392B2, 2006-07-18
|
30 |
Baleta A. Disappointment at failure of microbicide candidate. Lancet Infectious Diseases, 2008, 8(4): 221–221
|
31 |
Tao W, Richards C, Hamer D. Short communication—enhancement of HIV infection by cellulose sulfate. AIDS Research and Human Retroviruses, 2008, 24(7): 925–929
|
32 |
Pirrone V, Passic S, Wigdahl B, Krebs F. Clinical failures of select polyanionic microbicide candidates may be predicted by in vitro enhancement of HIV-1 infection. Antiviral Research, 2009, 82(2): A65–A66
|
33 |
Pirrone V, Wigdahl B, Krebs F C. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral Research, 2011, 90(3): 168–182
|
34 |
Agarwal H K, Kumar A, Doncel G F, Parang K. Synthesis, antiviral and contraceptive activities of nucleoside-sodium cellulose sulfate acetate and succinate conjugates. Bioorganic & Medicinal Chemistry Letters, 2010, 20(23): 6993–6997
|
35 |
Wang M J, Xie Y L, Zheng Q D, Yao S J. A novel, potential microflora-activated carrier for a colon-specific drug delivery system and its characteristics. Industrial & Engineering Chemistry Research, 2009, 48(11): 5276–5284
|
36 |
Zhu L Y, Lin D Q, Yao S J. Biodegradation of polyelectrolyte complex films composed of chitosan and sodium cellulose sulfate as the controllable release carrier. Carbohydrate Polymers, 2010, 82(2): 323–328
|
37 |
Rohowsky J, Heise K, Fischer S, Hettrich K. Synthesis and characterization of novel cellulose ether sulfates. Carbohydrate Polymers, 2016, 142: 56–62
|
38 |
Gericke M, Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides, 8-synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromolecular Bioscience, 2009, 9(4): 343–353
|
39 |
Wang M J. Study on NaCS used for vegetable capsule and colon-targeted drug delivery capsule. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2010, 29–38 (in Chinese)
|
40 |
Zhang K, Peschel D, Baeucker E, Groth T, Fischer S. Synthesis and characterisation of cellulose sulfates regarding the degrees of substitution, degrees of polymerisation and morphology. Carbohydrate Polymers, 2011, 83(4): 1659–1664
|
41 |
Chen G, Zhang B, Zhao J, Chen H. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohydrate Polymers, 2013, 95(1): 332–337
|
42 |
John A A, Subramanian A P, Vellayappan M V, Balaji A, Jaganathan S K, Mohandas H, Paramalinggam T, Supriyanto E, Yusof M. Review: Physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Advances, 2015, 5(49): 39232–39244
|
43 |
Mei L H, Yao S J. Cultivation and modelling of encapsulated Saccharomyces cerevisiae in NaCS-PDMDAAC polyelectrolyte complexes. Journal of Microencapsulation, 2002, 19(4): 397–405
|
44 |
Mei L H, Yao S J, Lin D Q, Cen P L, Zhu Z Q. Biocompatibility of NaCS and PDADMAC microcapsules with Bacillus thuringiensis. CIESC Journal, 1999, 50(5): 592–597
|
45 |
Mei L H, Lin D Q, Yao S J, Han Z X. Study on immobilization of bacillus thuringiensis by microencapsules of NaCS and PDADMAC. Journal of Zhejiang University (Engineering Science), 2000, 34(6): 694–695 (in Chinese)
|
46 |
Zhang J, Yao S J, Guan Y X. Preparation of macroporous sodium cellulose sulphate/poly(dimethyldiallylammonium chloride) capsules and their characteristics. Journal of Membrane Science, 2005, 255(1-2): 89–98
|
47 |
Dautzenberg H, Schuldt U, Grasnick G, Karle P, Muller P, Lohr M, Pelegrin M, Piechaczyk M, Rombs K V, Gunzburg W H,
|
48 |
Salmons B, Gunzburg W H. Therapeutic application of cell microencapsulation in cancer. Berlin: Springer-Verlag Press, 2010, 92–103
|
49 |
Yildirimer L, Seifalian A M. Three-dimensional biomaterial degradation—material choice, design and extrinsic factor considerations. Biotechnology Advances, 2014, 32(5): 984–999
|
50 |
Macy J M, Farrand J R, Montgomery L. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Applied and Environmental Microbiology, 1982, 44(6): 1428–1434
|
51 |
Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiology Ecology, 2003, 46(1): 81–89
|
52 |
Wu Q X, Li M Z, Yao S J. Performances of NaCS-WSC protein drug microcapsules with different degree of substitution of NaCS using sodium polyphosphate as cross-linking agent. Cellulose (London, England), 2014, 21(3): 1897–1908
|
53 |
Zhu L Y. Study on colon-specific drug delivery carrier based on chitosan and sodium cellulose sulfate. Dissertation for the Doctoral Degree.Hangzhou: Zhejiang University, 2011, 20–24 (in Chinese)
|
54 |
Zhang K, Brendler E, Fischer S F T. Raman investigation of sodium cellulose sulfate. Cellulose (London, England), 2010, 17(2): 427–435
|
55 |
Wang M J, Yao S J. Determination of molecular weight of sodium cellulose sulfate by low angle laser light scattering. Chinese Journal of Process Engineering, 2009, 9(6): 1159–1163 (in Chinese)
|
56 |
Zhang Q L, Lin D Q, Yao S J. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydrate Polymers, 2015, 132: 311–322
|
57 |
Mei L H, Yao J T, Yao S J. Immobilized culture of Bacillus subtilis in NACS-PDMDAAC microcapsules for production of new anti-thrombus enzyme. CIESC Journal, 2000, 51(6): 814–817
|
58 |
Zhang Z R, Zheng Q D, Yao S J. Cultivation of encapsulated Monascus purpureus in NaCS-PDMDAAC capsules. Food and Fermentation Industries, 2003, 29(11): 1–4
|
59 |
Mei L H, Zhang X Z, Ai B Y, Sheng Q, Lin D Q, Yao S J, Zhu Z Q. Immobilized culture of Bacillus subtilis in SA/CS-CaCl2/PMCG microcapsule for production of nattokinase. CIESC Journal, 2004, 55(8): 1319–1323
|
60 |
Mei L H, Yang J L, Zhong C H, Lin D Q, Yao S J. Cultivation of Brevibacterium flavum in new microcapsule system and production of glutamic acid. Journal of Zhejiang University (Engineering Science), 2005, 39(9): 1400–1403 (in Chinese)
|
61 |
Ji Y Y, Yao S J, Zhang J, Guan Y X, Lin D Q. Cultivation of encapsulated C.valida for producing lipase in macro-porous NaCS-PDMDAAC microcapsules. CIESC Journal, 2005, 56(11): 2162–2165
|
62 |
Zhao Y N, Chen G, Yao S J. Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochemical Engineering Journal, 2006, 32(2): 93–99
|
63 |
Chen G, Zhao Y N, Huang H, Yao S J. 1,3-Propanediol production from glycerol by Klebsiella pneumoniae encapsulated in NACS/PDMDAAC capsules. CIESC Journal, 2006, 57(12): 2933–2937
|
64 |
Chen G, Zhao Y N, Yao S J, Fang B S. Production of 1,3-propanediol by co-culture of two immobilized microbes in series. Journal of Beijing University of Chemical Technology, 2007, 34(6): 640–644 (in Chinese)
|
65 |
Ma Q L, Lin D Q, Yao S J. Immobilization of mixed bacteria by microcapsulation for hydrogen production—a trial of pseudo “Cell Factory”. Chinese Journal of Biotechnology, 2010, 26(10): 1444–1450
|
66 |
Lohr M, Muller P, Karle P, Stange J, Mitzner S, Jesnowski R, Nizze H, Nebe B, Liebe S, Salmons B, Gunzburg W H. Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. Gene Therapy, 1998, 5(8): 1070–1078
|
67 |
Weber W, Rinderknecht M, Baba M, de Glutz F N, Aubel D, Fussenegger M. CellMAC: A novel technology for encapsulation of mammalian cells in cellulose sulfate/pDADMAC capsules assembled on a transient alginate/Ca2+ scaffold. Journal of Biotechnology, 2004, 114(3): 315–326
|
68 |
Stiegler P B, Stadlbauer V, Schaffellner S, Halwachs G, Lackner C, Hauser O, Iberer F, Tscheliessnigg K. Cryopreservation of insulin-producing cells microencapsulated in sodium cellulose sulfate. Transplantation Proceedings, 2006, 38(9): 3026–3030
|
69 |
Stiegler P, Matzi V, Pierer E, Hauser O, Schaffellner S, Renner H, Greilberger J, Aigner R, Maier A, Lackner C, Iberer F, Smolle-Jüttner F M, Tscheliessnigg K, Stadlbauer V. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation, 2010, 17(5): 379–390
|
70 |
Zeng X H, Danquah M K, Zheng C, Potumarthi R, Chen X D, Lu Y H. NaCS-PDMDAAC immobilized autotrophic cultivation of Chlorella sp. for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 2012, 187: 185–192
|
71 |
Wu Q X, Lin D Q, Yao S J. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Marine Drugs, 2014, 12(12): 6236–6253
|
72 |
Wu Q X, Yao S J. Novel NaCS-CS-PPS microcapsules as a potential enzyme-triggered release carrier for highly-loading 5-ASA. Colloids and Surfaces. B, Biointerfaces, 2013, 109: 147–153
|
73 |
Wu Q X, Zhang Q L, Lin D Q, Yao S J. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. International Journal of Pharmaceutics, 2013, 455(1-2): 124–131
|
74 |
Xie Y L, Wang M J, Yao S J. Layer-by-layer self-assembly complex membrane composed of sodium cellulose sulfate-chitosan. CIESC Journal, 2008, 59(11): 2910–2915
|
75 |
Xie Y L, Wang M J, Yao S J. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir, 2009, 25(16): 8999–9005
|
76 |
Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103
|
77 |
Wu Q X, Lin D Q, Yao S J. Fabrication and formation studies on single-walled CA/NaCS-WSC microcapsules. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59: 909–915
|
/
〈 | 〉 |