Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing

Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao

PDF(2073 KB)
PDF(2073 KB)
Front. Chem. Sci. Eng. ›› 2019, Vol. 13 ›› Issue (1) : 46-58. DOI: 10.1007/s11705-018-1723-x
REVIEW ARTICLE
REVIEW ARTICLE

Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing

Author information +
History +

Abstract

Due to a worldwide focus on sustainable materials for human health and economy services, more and more natural renewable biomass are regarded as promising materials that could replace synthetic polymers and reduce global dependence on petroleum resources. Cellulose is known as the most abundant renewable polymer in nature, varieties of cellulose-based products have been developed and have gained growing interest in recent years. In this review, a kind of water-soluble cellulose derivative, i.e., sodium cellulose sulfate (NaCS) is introduced. Details about NaCS’s physicochemical properties like solubility, biocompatibility, biodegradability, degree of substitution, etc. are systematically elaborated. And promising applications of NaCS used as biomaterials for microcarriers’ designing, such as micro-cell-carriers, micro-drug-carriers, etc., are presented.

Graphical abstract

Keywords

sodium cellulose sulfate / biomaterial / physicochemical properties / microcarriers

Cite this article

Download citation ▾
Qing-Xi Wu, Yi-Xin Guan, Shan-Jing Yao. Sodium cellulose sulfate: A promising biomaterial used for microcarriers’ designing. Front. Chem. Sci. Eng., 2019, 13(1): 46‒58 https://doi.org/10.1007/s11705-018-1723-x

References

[1]
Klemm D, Heublein B, Fink H P, Bohn A. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie International Edition, 2005, 44(22): 3358–3393
CrossRef Google scholar
[2]
Goh C S, Tan K T, Lee K T, Bhatia S. Bio-ethanol from lignocellulose: Status, perspectives and challenges in Malaysia. Bioresource Technology, 2010, 101(13): 4834–4841
CrossRef Google scholar
[3]
Koo B, Kim H, Cho Y, Lee K T, Choi N S, Cho J. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angewandte Chemie International Edition, 2012, 51(35): 8762–8767
CrossRef Google scholar
[4]
Chang C, Zhang L. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, 2011, 84(1): 40– 53
CrossRef Google scholar
[5]
Kubo Y, Nakajima O, Ogawa K. EP Patent, 2811544A1, 2014-12-10
[6]
Zhang L X, Liu Z H, Cui G L, Chen L Q. Biomass-derived materials for electrochemical energy storages. Progress in Polymer Science, 2015, 43: 136–164
CrossRef Google scholar
[7]
Kadokawa J. Precision polysaccharide synthesis catalyzed by enzymes. Chemical Reviews, 2011, 111(7): 4308–4345
CrossRef Google scholar
[8]
Andrade D, Mendonca M H, Helm C V, Magalhaes W, de Muniz G, Kestur S G. Assessment of nano cellulose from peach palm residue as potential food additive: Part II: Preliminary studies. Journal of Food Science and Technology-Mysore, 2015, 52(9): 5641–5650
CrossRef Google scholar
[9]
Gomez H C, Serpa A, Velasquez-Cock J, Ganan P, Castro C, Velez L, Zuluaga R. Vegetable nanocellulose in food science: A review. Food Hydrocolloids, 2016, 57: 178–186
CrossRef Google scholar
[10]
Garcia-Zapateiro L A, Valencia C, Franco J M. Formulation of lubricating greases from renewable basestocks and thickener agents: A rheological approach. Industrial Crops and Products, 2014, 54: 115–121
CrossRef Google scholar
[11]
Al-Ibraheemi Z, Anuar M S, Taip F S, Amin M, Tahir S M, Mahdi A B. Deformation and mechanical characteristics of compacted binary mixtures of plastic (microcrystalline cellulose), elastic (sodium starch glycolate), and brittle (lactose monohydrate) pharmaceutical excipients. Particulate Science and Technology, 2013, 31(6): 561–567
CrossRef Google scholar
[12]
Ojala J, Sirvio J A, Liimatainen H. Nanoparticle emulsifiers based on bifunctionalized cellulose nanocrystals as marine diesel oil-water emulsion stabilizers. Chemical Engineering Journal, 2016, 288: 312–320
CrossRef Google scholar
[13]
Oun A A, Rhim J W. Isolation of cellulose nanocrystals from grain straws and their use for the preparation of carboxymethyl cellulose-based nanocomposite films. Carbohydrate Polymers, 2016, 150: 187–200
CrossRef Google scholar
[14]
Ma X, Lv M, Anderson D P, Chang P R. Natural polysaccharide composites based on modified cellulose spheres and plasticized chitosan matrix. Food Hydrocolloids, 2017, 66: 276–285
CrossRef Google scholar
[15]
Schweiger R G. Polysaccharide sulfates. I. Cellulose sulfate with a high degree of substitution. Carbohydrate Research, 1972, 21(2): 219–228
CrossRef Google scholar
[16]
Brewer R J, Tenn K. US Patent, 4480091, 1984-10-30
[17]
Usher T C, Patel N, Tele C G. US Patent, 5378828, 1995-01-03
[18]
Hettrich K, Wagenknecht W, Volkert B, Fischer S. New possibilities of the acetosulfation of cellulose. Macromolecular Symposia, 2008, 262(1): 162–169
CrossRef Google scholar
[19]
Sparrow D B, Powers W R. US Patent, 2862922, 1958-12-02
[20]
Yao S J. An improved process for the preparation of sodium cellulose sulphate. Chemical Engineering Journal, 2000, 78(2-3): 199–204
CrossRef Google scholar
[21]
Yao S J, Lin D Q, Fang L. CN Patent, 101274964B, 2010-11-03
[22]
Yao S J. Verfahrenstechnische auslegung einer anlage fuer die natrium-cellulosesulfatherstellung zur immobiliserung von biokatalysatoren. Dissertation for the Doctoral Degree. Berlin: Technical University of Berlin, 1996, 57–90
[23]
Anderson R A, Zaneveld L J D, Usher T C. US Patent, 6063773, 2000-05-16
[24]
Okajima K, Kamide K, Matsui T. EP Patent, 0053473A1, 1981-11-25
[25]
Yoshida T. Synthesis of polysaccharides having specific biological activities. Progress in Polymer Science, 2001, 26(3): 379–441
CrossRef Google scholar
[26]
Yoshida T, Kang B W, Hattori K, Mimura T, Kaneko Y, Nakashima H, Premanathan M, Aragaki R, Yamamoto N, Uryu T. Anti-HIV activity of sulfonated arabinofuranan and xylofuranan. Carbohydrate Polymers, 2001, 42(2): 141–150
CrossRef Google scholar
[27]
Anderson R A, Feathergill K A, Diao X H, Cooper M D, Kirkpatrick R, Herold B C, Doncel G F, Chany C J, Waller D P, Rencher W F, Preclinical evaluation of sodium cellulose sulfate (Ushercell) as a contraceptive antimicrobial agent. Journal of Andrology, 2002, 23(3): 426–438
[28]
Anderson R A, Feathergill K, Diao X H, Chany C II, Rencher W F, Zaneveld L, Waller D P. Contraception by Ushercell (TM) (cellulose sulfate) in formulation: Duration of effect and dose effectiveness. Contraception, 2004, 70(5): 415–422
CrossRef Google scholar
[29]
Zaneveld L J D, Anderson R A, Usher T C. US Patent, 7078392B2, 2006-07-18
[30]
Baleta A. Disappointment at failure of microbicide candidate. Lancet Infectious Diseases, 2008, 8(4): 221–221
CrossRef Google scholar
[31]
Tao W, Richards C, Hamer D. Short communication—enhancement of HIV infection by cellulose sulfate. AIDS Research and Human Retroviruses, 2008, 24(7): 925–929
CrossRef Google scholar
[32]
Pirrone V, Passic S, Wigdahl B, Krebs F. Clinical failures of select polyanionic microbicide candidates may be predicted by in vitro enhancement of HIV-1 infection. Antiviral Research, 2009, 82(2): A65–A66
CrossRef Google scholar
[33]
Pirrone V, Wigdahl B, Krebs F C. The rise and fall of polyanionic inhibitors of the human immunodeficiency virus type 1. Antiviral Research, 2011, 90(3): 168–182
CrossRef Google scholar
[34]
Agarwal H K, Kumar A, Doncel G F, Parang K. Synthesis, antiviral and contraceptive activities of nucleoside-sodium cellulose sulfate acetate and succinate conjugates. Bioorganic & Medicinal Chemistry Letters, 2010, 20(23): 6993–6997
CrossRef Google scholar
[35]
Wang M J, Xie Y L, Zheng Q D, Yao S J. A novel, potential microflora-activated carrier for a colon-specific drug delivery system and its characteristics. Industrial & Engineering Chemistry Research, 2009, 48(11): 5276–5284
CrossRef Google scholar
[36]
Zhu L Y, Lin D Q, Yao S J. Biodegradation of polyelectrolyte complex films composed of chitosan and sodium cellulose sulfate as the controllable release carrier. Carbohydrate Polymers, 2010, 82(2): 323–328
CrossRef Google scholar
[37]
Rohowsky J, Heise K, Fischer S, Hettrich K. Synthesis and characterization of novel cellulose ether sulfates. Carbohydrate Polymers, 2016, 142: 56–62
CrossRef Google scholar
[38]
Gericke M, Liebert T, Heinze T. Interaction of ionic liquids with polysaccharides, 8-synthesis of cellulose sulfates suitable for polyelectrolyte complex formation. Macromolecular Bioscience, 2009, 9(4): 343–353
CrossRef Google scholar
[39]
Wang M J. Study on NaCS used for vegetable capsule and colon-targeted drug delivery capsule. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2010, 29–38 (in Chinese)
[40]
Zhang K, Peschel D, Baeucker E, Groth T, Fischer S. Synthesis and characterisation of cellulose sulfates regarding the degrees of substitution, degrees of polymerisation and morphology. Carbohydrate Polymers, 2011, 83(4): 1659–1664
CrossRef Google scholar
[41]
Chen G, Zhang B, Zhao J, Chen H. Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution. Carbohydrate Polymers, 2013, 95(1): 332–337
CrossRef Google scholar
[42]
John A A, Subramanian A P, Vellayappan M V, Balaji A, Jaganathan S K, Mohandas H, Paramalinggam T, Supriyanto E, Yusof M. Review: Physico-chemical modification as a versatile strategy for the biocompatibility enhancement of biomaterials. RSC Advances, 2015, 5(49): 39232–39244
CrossRef Google scholar
[43]
Mei L H, Yao S J. Cultivation and modelling of encapsulated Saccharomyces cerevisiae in NaCS-PDMDAAC polyelectrolyte complexes. Journal of Microencapsulation, 2002, 19(4): 397–405
CrossRef Google scholar
[44]
Mei L H, Yao S J, Lin D Q, Cen P L, Zhu Z Q. Biocompatibility of NaCS and PDADMAC microcapsules with Bacillus thuringiensis. CIESC Journal, 1999, 50(5): 592–597
[45]
Mei L H, Lin D Q, Yao S J, Han Z X. Study on immobilization of bacillus thuringiensis by microencapsules of NaCS and PDADMAC. Journal of Zhejiang University (Engineering Science), 2000, 34(6): 694–695 (in Chinese)
[46]
Zhang J, Yao S J, Guan Y X. Preparation of macroporous sodium cellulose sulphate/poly(dimethyldiallylammonium chloride) capsules and their characteristics. Journal of Membrane Science, 2005, 255(1-2): 89–98
CrossRef Google scholar
[47]
Dautzenberg H, Schuldt U, Grasnick G, Karle P, Muller P, Lohr M, Pelegrin M, Piechaczyk M, Rombs K V, Gunzburg W H, Development of cellulose sulfate-based polyelectrolyte complex microcapsules for medical applications. Annals of the New York Academy of Sciences, 1999, 875(1): 46–63
CrossRef Google scholar
[48]
Salmons B, Gunzburg W H. Therapeutic application of cell microencapsulation in cancer. Berlin: Springer-Verlag Press, 2010, 92–103
[49]
Yildirimer L, Seifalian A M. Three-dimensional biomaterial degradation—material choice, design and extrinsic factor considerations. Biotechnology Advances, 2014, 32(5): 984–999
CrossRef Google scholar
[50]
Macy J M, Farrand J R, Montgomery L. Cellulolytic and non-cellulolytic bacteria in rat gastrointestinal tracts. Applied and Environmental Microbiology, 1982, 44(6): 1428–1434
[51]
Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiology Ecology, 2003, 46(1): 81–89
CrossRef Google scholar
[52]
Wu Q X, Li M Z, Yao S J. Performances of NaCS-WSC protein drug microcapsules with different degree of substitution of NaCS using sodium polyphosphate as cross-linking agent. Cellulose (London, England), 2014, 21(3): 1897–1908
CrossRef Google scholar
[53]
Zhu L Y. Study on colon-specific drug delivery carrier based on chitosan and sodium cellulose sulfate. Dissertation for the Doctoral Degree.Hangzhou: Zhejiang University, 2011, 20–24 (in Chinese)
[54]
Zhang K, Brendler E, Fischer S F T. Raman investigation of sodium cellulose sulfate. Cellulose (London, England), 2010, 17(2): 427–435
CrossRef Google scholar
[55]
Wang M J, Yao S J. Determination of molecular weight of sodium cellulose sulfate by low angle laser light scattering. Chinese Journal of Process Engineering, 2009, 9(6): 1159–1163 (in Chinese)
[56]
Zhang Q L, Lin D Q, Yao S J. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydrate Polymers, 2015, 132: 311–322
CrossRef Google scholar
[57]
Mei L H, Yao J T, Yao S J. Immobilized culture of Bacillus subtilis in NACS-PDMDAAC microcapsules for production of new anti-thrombus enzyme. CIESC Journal, 2000, 51(6): 814–817
[58]
Zhang Z R, Zheng Q D, Yao S J. Cultivation of encapsulated Monascus purpureus in NaCS-PDMDAAC capsules. Food and Fermentation Industries, 2003, 29(11): 1–4
[59]
Mei L H, Zhang X Z, Ai B Y, Sheng Q, Lin D Q, Yao S J, Zhu Z Q. Immobilized culture of Bacillus subtilis in SA/CS-CaCl2/PMCG microcapsule for production of nattokinase. CIESC Journal, 2004, 55(8): 1319–1323
[60]
Mei L H, Yang J L, Zhong C H, Lin D Q, Yao S J. Cultivation of Brevibacterium flavum in new microcapsule system and production of glutamic acid. Journal of Zhejiang University (Engineering Science), 2005, 39(9): 1400–1403 (in Chinese)
[61]
Ji Y Y, Yao S J, Zhang J, Guan Y X, Lin D Q. Cultivation of encapsulated C.valida for producing lipase in macro-porous NaCS-PDMDAAC microcapsules. CIESC Journal, 2005, 56(11): 2162–2165
[62]
Zhao Y N, Chen G, Yao S J. Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae. Biochemical Engineering Journal, 2006, 32(2): 93–99
CrossRef Google scholar
[63]
Chen G, Zhao Y N, Huang H, Yao S J. 1,3-Propanediol production from glycerol by Klebsiella pneumoniae encapsulated in NACS/PDMDAAC capsules. CIESC Journal, 2006, 57(12): 2933–2937
[64]
Chen G, Zhao Y N, Yao S J, Fang B S. Production of 1,3-propanediol by co-culture of two immobilized microbes in series. Journal of Beijing University of Chemical Technology, 2007, 34(6): 640–644 (in Chinese)
[65]
Ma Q L, Lin D Q, Yao S J. Immobilization of mixed bacteria by microcapsulation for hydrogen production—a trial of pseudo “Cell Factory”. Chinese Journal of Biotechnology, 2010, 26(10): 1444–1450
[66]
Lohr M, Muller P, Karle P, Stange J, Mitzner S, Jesnowski R, Nizze H, Nebe B, Liebe S, Salmons B, Gunzburg W H. Targeted chemotherapy by intratumour injection of encapsulated cells engineered to produce CYP2B1, an ifosfamide activating cytochrome P450. Gene Therapy, 1998, 5(8): 1070–1078
CrossRef Google scholar
[67]
Weber W, Rinderknecht M, Baba M, de Glutz F N, Aubel D, Fussenegger M. CellMAC: A novel technology for encapsulation of mammalian cells in cellulose sulfate/pDADMAC capsules assembled on a transient alginate/Ca2+ scaffold. Journal of Biotechnology, 2004, 114(3): 315–326
CrossRef Google scholar
[68]
Stiegler P B, Stadlbauer V, Schaffellner S, Halwachs G, Lackner C, Hauser O, Iberer F, Tscheliessnigg K. Cryopreservation of insulin-producing cells microencapsulated in sodium cellulose sulfate. Transplantation Proceedings, 2006, 38(9): 3026–3030
CrossRef Google scholar
[69]
Stiegler P, Matzi V, Pierer E, Hauser O, Schaffellner S, Renner H, Greilberger J, Aigner R, Maier A, Lackner C, Iberer F, Smolle-Jüttner F M, Tscheliessnigg K, Stadlbauer V. Creation of a prevascularized site for cell transplantation in rats. Xenotransplantation, 2010, 17(5): 379–390
CrossRef Google scholar
[70]
Zeng X H, Danquah M K, Zheng C, Potumarthi R, Chen X D, Lu Y H. NaCS-PDMDAAC immobilized autotrophic cultivation of Chlorella sp. for wastewater nitrogen and phosphate removal. Chemical Engineering Journal, 2012, 187: 185–192
CrossRef Google scholar
[71]
Wu Q X, Lin D Q, Yao S J. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes. Marine Drugs, 2014, 12(12): 6236–6253
CrossRef Google scholar
[72]
Wu Q X, Yao S J. Novel NaCS-CS-PPS microcapsules as a potential enzyme-triggered release carrier for highly-loading 5-ASA. Colloids and Surfaces. B, Biointerfaces, 2013, 109: 147–153
CrossRef Google scholar
[73]
Wu Q X, Zhang Q L, Lin D Q, Yao S J. Characterization of novel lactoferrin loaded capsules prepared with polyelectrolyte complexes. International Journal of Pharmaceutics, 2013, 455(1-2): 124–131
CrossRef Google scholar
[74]
Xie Y L, Wang M J, Yao S J. Layer-by-layer self-assembly complex membrane composed of sodium cellulose sulfate-chitosan. CIESC Journal, 2008, 59(11): 2910–2915
[75]
Xie Y L, Wang M J, Yao S J. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self-assembly. Langmuir, 2009, 25(16): 8999–9005
CrossRef Google scholar
[76]
Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M. Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. Journal of Colloid and Interface Science, 2000, 227(1): 95–103
CrossRef Google scholar
[77]
Wu Q X, Lin D Q, Yao S J. Fabrication and formation studies on single-walled CA/NaCS-WSC microcapsules. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59: 909–915
CrossRef Google scholar

Acknowledgments

This work was funded by China Postdoctoral Science Foundation (No. 2017M611998), the National Natural Science Foundation of China (Grant Nos. 21606002 and 21576233), the Natural Science Foundation of Anhui Province (CN) (No. 1708085QC64), the Doctoral Research Start-up Fund of Anhui University (J01001319), and the Undergraduate Research Training Programs for Innovation (Nos. KYXL2017036, 201710357034 and 201710357268).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(2073 KB)

Accesses

Citations

Detail

Sections
Recommended

/