REVIEW ARTICLE

Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting

  • Wenfu Xie ,
  • Zhenhua Li ,
  • Mingfei Shao ,
  • Min Wei
Expand
  • State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Received date: 28 Jan 2018

Accepted date: 01 Mar 2018

Published date: 18 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy productions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materials have gained increasing attentions as promising electrocatalysts for water splitting. Designing LDHs into hierarchical architectures (e.g., core-shell nanoarrays) is one of the most promising strategies to improve their electrocatalytic performances, owing to the abundant exposure of active sites. This review mainly focuses on recent progress on the synthesis of hierarchical LDH-based core-shell nanoarrays as high performance electrocatalysts for electrochemical water splitting. By classifying different nanostructured materials combined with LDHs, a number of LDH-based core-shell nanoarrays have been developed and their synthesis strategies, structural characters and electrochemical performances are rationally described. Moreover, further developments and challenges in developing promising electrocatalysts based on hierarchical nanostructured LDHs are covered from the viewpoint of fundamental research and practical applications.

Cite this article

Wenfu Xie , Zhenhua Li , Mingfei Shao , Min Wei . Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 537 -554 . DOI: 10.1007/s11705-018-1719-6

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. ), the 973 Program (Grant No. 2014CB932102) and the Fundamental Research Funds for the Central Universities (bsbuctylkxj01 and buctrc201506).
1
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998

2
Yang Y, Zhang H L, Lin Z H, Liu Y, Chen J, Lin Z Y, Zhou Y S, Wong C P, Wang Z L. A hybrid energy cell for self-powered water splitting. Energy & Environmental Science, 2013, 6(8): 2429–2434

DOI

3
Lu Y C, Gasteiger H A, Shao-Horn Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. Journal of the American Chemical Society, 2011, 133(47): 19048–19051

DOI

4
Zhou H Q, Yu F, Huang Y F, Sun J Y, Zhu Z, Nielsen R J, He R, Bao J M, Goddard W A III, Chen S, Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 2016, 7: 12765–12772

DOI

5
Zhu Y P, Ma T Y, Jaroniec M, Qiao S Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angewandte Chemie International Edition, 2017, 56(5): 1324–1328

DOI

6
Li D, Baydoun H, Kulikowski B, Brock S L. Boosting the catalytic performance of iron phosphide nanorods for the oxygen evolution reaction by incorporation of manganese. Chemistry of Materials, 2017, 29(7): 3048–3054

DOI

7
Pei Z X, Li H F, Huang Y, Xue Q, Huang Y, Zhu M S, Wang Z F, Zhi C Y. Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy & Environmental Science, 2017, 10(3): 742–749

DOI

8
Ren F M, Wang Z, Luo L F, Lu H Y, Zhou G, Huang W X, Hong X, Wu Y E, Li Y D. Utilization of active Ni to fabricate Pt-Ni nanoframe/NiAl layered double hydroxide multifunctional catalyst through in situ precipitation. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(38): 13181–13185

DOI

9
Zhou L, Shao M F, Wei M, Duan X. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26(6): 1094–1106

DOI

10
Zhang Z C, Liu Y, Chen B, Gong Y, Gu L, Fan Z X, Yang N L, Lai Z C, Chen Y, Wang J, et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Advanced Materials, 2016, 28(46): 10282–10286

DOI

11
He D S, He D P, Wang J, Lin Y, Yin P Q, Hong X, Wu Y, Li Y D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. Journal of the American Chemical Society, 2016, 138(5): 1494–1497

DOI

12
Ren F M, Lu H Y, Liu H T, Wang Z, Wu Y E, Li Y D. Surface ligand-mediated isolated growth of Pt on Pd nanocubes for enhanced hydrogen evolution activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(47): 23660–23663

DOI

13
Yan Y, Xia B Y, Ge X M, Liu Z L, Fisher A, Wang X. A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(50): 18062–18067

DOI

14
Qi J, Zhang W, Xiang R J, Liu K Q, Wang H Y, Chen M X, Han Y Z, Cao R. Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Advancement of Science, 2015, 2(10): 5203–5208

15
Cheng Y F, Liao F, Shen W, Liu L B, Jiang B B, Li Y Q, Shao M W. Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc-air batteries. Nanoscale, 2017, 9(47): 18977–18982

DOI

16
Tan Y W, Wang H, Liu P, Shen Y H, Cheng C, Hirata A, Fujita T, Tang Z, Chen M W. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy & Environmental Science, 2016, 9(7): 2257–2261

DOI

17
Zhou J, Zhuang H L L, Wang H. Layered tetragonal zinc chalcogenides for energy-related applications: From photocatalysts for water splitting to cathode materials for Li-ion batteries. Nanoscale, 2017, 9(44): 17303–17311

DOI

18
Wang J J, Meng J, Li Q X, Yang J L. Single-layer cadmium chalcogenides: promising visible-light driven photocatalysts for water splitting. Physical Chemistry Chemical Physics, 2016, 18(25): 17029–17036

DOI

19
Zheng J, Chen X L, Zhong X, Li S Q, Liu T Z, Zhuang G L, Li X N, Deng S W, Mei D H, Wang J G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Advanced Functional Materials, 2017, 27(46): 1704169–1704180

DOI

20
Kibria M G, Chowdhury F A, Zhao S, AlOtaibi B, Trudeau M L, Guo H, Mi Z. Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nature Communications, 2015, 6(1): 6797–6805

DOI

21
Kumar A, Bhattacharyya S. Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting. ACS Applied Materials & Interfaces, 2017, 9(48): 41906–41915

DOI

22
Yang Y, Niu S W, Han D D, Liu T Y, Wang G M, Li Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Advanced Energy Materials, 2017, 7(19): 1700555–1700581

DOI

23
Pawar S M, Pawar B S, Hou B, Kim J, Ahmed A T A, Chavan H S, Jo Y, Cho S, Inamdar A I, Gunjakar J L, Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(25): 12747–12751

DOI

24
Zhou L, Shao M F, Li J B, Jiang S, Wei M, Duan X. Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy, 2017, 41: 583–590

DOI

25
Zhang C L, Shao M F, Ning F Y, Xu S M, Li Z H, Wei M, Evans D G, Duan X. Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting. Nano Energy, 2015, 12: 231–239

DOI

26
Nai J W, Yin H J, You T T, Zheng L R, Zhang J, Wang P X, Jin Z, Tian Y, Liu J Z, Tang Z Y, et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Advanced Energy Materials, 2015, 5(10): 1401880–1401887

DOI

27
Lu Z Y, Qian L, Tian Y, Li Y P, Sun X M, Duan X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chemical Communications, 2016, 52(5): 908–911

DOI

28
Wang H, Zhou T T, Li P L, Cao Z, Xi W, Zhao Y F, Ding Y. Self-supported hierarchical nanostructured NiFe-LDH and Cu3P weaving mesh electrodes for efficient water splitting. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 380–388

DOI

29
Li X M, Hao X G, Wang Z D, Abudula A, Guan G Q. In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting. Journal of Power Sources, 2017, 347: 193–200

DOI

30
Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013, 135(23): 8452–8455

DOI

31
Shao M F, Ning F Y, Wei M, Evans D G, Duan X. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Advanced Functional Materials, 2014, 24(5): 580–586

DOI

32
Zhang C, Shao M F, Zhou L, Li Z H, Xiao K M, Wei M. Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction. ACS Applied Materials & Interfaces, 2016, 8(49): 33697–33703

DOI

33
Zhou L, Shao M F, Zhang C, Zhao J W, He S, Rao D M, Wei M, Evans D G, Duan X. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Advanced Materials, 2016, 29(6): 1604080–1604088

DOI

34
Han J B, Dou Y B, Zhao J W, Wei M, Evans D G, Duan X. Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small, 2013, 9(1): 98–106

DOI

35
Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M, Evans D G, Duan X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chemical Science (Cambridge), 2015, 6(11): 6624–6631

DOI

36
Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation. Advanced Functional Materials, 2013, 23(28): 3513–3518

DOI

37
Chen H, Hu L F, Chen M, Yan Y, Wu L M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Advanced Functional Materials, 2014, 24(7): 934–942

DOI

38
Tang D, Liu J, Wu X Y, Liu R H, Han X, Han Y Z, Huang H, Liu Y, Kang Z H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Applied Materials & Interfaces, 2014, 6(10): 7918–7925

DOI

39
Zou X, Goswami A, Asefa T. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide. Journal of the American Chemical Society, 2013, 135(46): 17242–17245

DOI

40
Yang Q H, Li Z H, Zhang R K, Zhou L, Shao M F, Wei M. Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy, 2017, 41: 408–416

DOI

41
Ning F Y, Shao M F, Zhang C L, Xu S M, Wei M, Duan X. Co3O4@layered double hydroxide core/shell hierarchical nanowire arrays for enhanced supercapacitance performance. Nano Energy, 2014, 7: 134–142

DOI

42
Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155

DOI

43
Li C M, Wei M, Evans D G, Duan X. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small, 2014, 10(22): 4469–4486

DOI

44
Gu Z, Atherton J J, Xu Z P. Hierarchical layered double hydroxide nanocomposites: Structure, synthesis and applications. Chemical Communications, 2015, 51(15): 3024–3036

DOI

45
He S, An Z, Wei M, Evans D G, Duan X. Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chemical Communications, 2013, 49(53): 5912–5920

DOI

46
Zhao M Q, Zhang Q, Huang J Q, Wei F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Advanced Functional Materials, 2012, 22(4): 675–694

DOI

47
Tang C, Wang H F, Zhu X L, Li B Q, Zhang Q. Advances in hybrid electrocatalysts for oxygen evolution reactions: Rational integration of NiFe layered double hydroxides and nanocarbon. Particle & Particle Systems Characterization, 2016, 33(8): 473–486

DOI

48
Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 2015, 8(1): 23–39

DOI

49
Ko J W, Ryu W H, Kim I D, Park C B. Bi-functional RuO2-Co3O4 core-shell nanofibers as a multi-component one-dimensional water oxidation catalyst. Chemical Communications, 2013, 49(84): 9725–9727

DOI

50
Wang D A, Hisatomi T, Takata T, Pan C S, Katayama M, Kubota J, Domen K. Core/shell photocatalyst with spatially separated Co-catalysts for efficient reduction and oxidation of water. Angewandte Chemie International Edition, 2013, 52(43): 11252–11256

DOI

51
Hou C C, Wang C J, Chen Q Q, Lv X J, Fu W F, Chen Y. Rapid synthesis of ultralong Fe(OH)3:Cu(OH)2 core-shell nanowires self-supported on copper foam as a highly efficient 3D electrode for water oxidation. Chemical Communications, 2016, 52(100): 14470–14473

DOI

52
Ge R X, Ma M, Ren X, Qu F L, Liu Z, Du G, Asiri A M, Chen L, Zheng B Z, Sun X P A. NiCo2O4@Ni-Co-Ci core-shell nanowire array as an efficient electrocatalyst for water oxidation at near-neutral pH. Chemical Communications, 2017, 53(55): 7812–7815

DOI

53
Hu C L, Zhang L, Zhao Z J, Luo J, Shi J, Huang Z Q, Gong J L. Edge sites with unsaturated coordination on core-shell Mn3O4@MnxCo3−xO4 nanostructures for electrocatalytic water oxidation. Advanced Materials, 2017, 29(36): 1701820–1701827

DOI

54
Jiang J, Wang M, Yan W S, Liu X F, Liu J X, Yang J L, Sun L C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy, 2017, 38: 175–184

DOI

55
Li Z H, Shao M F, Yang Q H, Tang Y, Wei M, Evans D G, Duan X. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy, 2017, 37: 98–107

DOI

56
Lee J E, Jang Y J, Xu W Q, Feng Z X, Park H Y, Kim J Y, Kim D H. PtFe nanoparticles supported on electroactive AuPANI core@shell nanoparticles for high performance bifunctional electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13692–13699

DOI

57
Bu L Z, Shao Q, Bin E, Guo J, Yao J L, Huang X Q. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. Journal of the American Chemical Society, 2017, 139(28): 9576–9582

DOI

58
Li X L, Liu W, Zhang M Y, Zhong Y R, Weng Z, Mi Y Y, Zhou Y, Li M, Cha J J, Tang Z Y, et al. Strong metal-phosphide interactions in core-shell geometry for enhanced electrocatalysis. Nano Letters, 2017, 17(3): 2057–2063

DOI

59
Zhang N, Feng Y G, Zhu X, Guo S J, Guo J, Huang X Q. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Advanced Materials, 2017, 29(7): 1603774–1603781

DOI

60
Sun X L, Li D G, Guo S J, Zhu W L, Sun S H. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale, 2016, 8(5): 2626–2631

DOI

61
Gawande M B, Goswami A, Asefa T, Guo H Z, Biradar A V, Peng D L, Zboril R, Varma R S. Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44(21): 7540–7590

DOI

62
Zheng F L, Wong W T, Yung K F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Research, 2014, 7(3): 410–417

DOI

63
Lee J E, Chung K, Jang Y H, Jang Y J, Kochuveedu S T, Li D, Kim D H. Bimetallic multifunctional core@shell plasmonic nanoparticles for localized surface plasmon resonance based sensing and electrocatalysis. Analytical Chemistry, 2012, 84(15): 6494–6500

DOI

64
Li S Y, Qian T, Wu S S, Shen J. A facile, controllable fabrication of polystyrene/graphene core-shell microspheres and its application in high-performance electrocatalysis. Chemical Communications, 2012, 48(64): 7997–7999

DOI

65
Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Advanced Materials, 2016, 28(42): 9266–9291

DOI

66
Carvalho D C, Ferreira N A, Filho J M, Ferreira O P, Soares J M, Oliveira A C. Ni-Fe and Co-Fe binary oxides derived from layered double hydroxides and their catalytic evaluation for hydrogen production. Catalysis Today, 2015, 250: 155–165

DOI

67
Yan K, Lafleur T, Chai J, Jarvis C. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution. Electrochemistry Communications, 2016, 62: 24–28

DOI

68
Xia D C, Zhou L, Qiao S, Zhang Y L, Tang D, Liu J, Huang H, Liu Y, Kang Z H. Graphene/Ni-Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Materials Research Bulletin, 2016, 74: 441–446

DOI

69
Lu Z, Xu W W, Zhu W, Yang Q, Lei X D, Liu J F, Li Y P, Sun X M, Duan X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 2014, 50(49): 6479–6482

DOI

70
Liu X H, Ma R Z, Bando Y, Sasaki T. Layered cobalt hydroxide nanocones: Microwave-assisted synthesis, exfoliation, and structural modification. Angewandte Chemie International Edition, 2010, 49(44): 8253–8256

DOI

71
Liu R, Wang Y Y, Liu D D, Zou Y Q, Wang S Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Advanced Materials, 2017, 29(30): 1701546–1701553

DOI

72
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2017, 56(21): 5867–5871

DOI

73
Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications, 2014, 5: 4477–4486

DOI

74
Liu Q Y, Wang H, Wang X N, Tong R, Zhou X L, Peng X N, Wang H B, Tao H L, Zhang Z H. Bifunctional Ni1−xFex layered double hydroxides/Ni foam electrodes for high-efficient overall water splitting: A study on compositional tuning and valence state evolution. International Journal of Hydrogen Energy, 2017, 42(8): 5560–5568

DOI

75
Xing J H, Li H, Cheng M M C, Geyer S M, Ng K Y S. Electro-synthesis of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(36): 13866–13873

DOI

76
Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698

DOI

77
Qu Y D, Medina H, Wang S W, Wang Y C, Chen C W, Su T Y, Manikandan A, Wang K Y, Shih Y C, Chang J W, et al. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Advanced Materials, 2016, 28(44): 9831–9838

DOI

78
Yu L, Zhou H Q, Sun J Y, Qin F, Yu F, Bao J M, Yu Y, Chen S, Ren Z F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy & Environmental Science, 2017, 10(8): 1820–1827

DOI

79
Yu L, Zhou H Q, Sun J Y, Qin F, Luo D, Xie L X, Yu F, Bao J M, Li Y, Yu Y, et al. Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy, 2017, 41: 327–336

DOI

80
Guan C, Zeng Z Y, Li X L, Cao X H, Fan Y, Xia X H, Pan G X, Zhang H, Fan H J. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application. Small, 2014, 10(2): 300–307

DOI

81
Xia X H, Zhang Y Q, Chao D L, Guan C, Zhang Y J, Li L, Ge X, Bacho I M, Tu J P, Fan H J. Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6(10): 5008–5048

DOI

82
Mai Y Y, Zhang F, Feng X L. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage. Nanoscale, 2014, 6(1): 106–121

DOI

83
Shen L F, Ding B, Nie P, Cao G Z, Zhang X G. Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles. Advanced Energy Materials, 2013, 3(11): 1484–1489

DOI

84
Benehkohal N P, Demopoulos G P. Electrophoretically self-assembled mixed metal oxide-TiO2 nano-composite film structures for photoelectrochemical energy conversion: Probing of charge recombination and electron transport resistances. Journal of Power Sources, 2013, 240: 667–675

DOI

85
Shao M F, Ning F Y, Zhao Y F, Zhao J W, Wei M, Evans D G, Duan X. Core-shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chemistry of Materials, 2012, 24(6): 1192–1197

DOI

86
Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. Journal of the American Chemical Society, 2012, 134(2): 1071–1077

DOI

87
Li Z H, Shao M F, Zhou L, Zhang R K, Zhang C, Han J B, Wei M, Evans D G, Duan X. A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy, 2016, 20: 294–304

DOI

88
Wang Z Q, Zeng S, Liu W H, Wang X W, Li Q W, Zhao Z G, Geng F X. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Applied Materials & Interfaces, 2017, 9(2): 1488–1495

DOI

89
Xiao C L, Li Y B, Lu X Y, Zhao C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Advanced Functional Materials, 2016, 26(20): 3515–3523

DOI

90
Wang T, Xu W C, Wang H X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochimica Acta, 2017, 257: 118–127

DOI

91
Tang K, Wang X F, Wang M F, Xie Y M, Zhou J Q, Yan C L. Ni/Fe ratio dependence of catalytic activity in monodisperse ternary nickel iron phosphide for efficient water oxidation. Chemelectrochem, 2017, 4(9): 2150–2157

DOI

92
Jia X D, Gao S J, Liu T Y, Li D Q, Tang P G, Feng Y J. Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochimica Acta, 2017, 245: 51–60

DOI

93
Wang T, Xu W C, Wang H X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochimica Acta, 2017, 257: 118–127

DOI

94
Zhao X, Shang X, Quan Y, Dong B, Han G Q, Li X, Liu Y R, Chen Q, Chai Y M, Liu C G. Electrodeposition-solvothermal access to ternary mixed metal Ni-Co-Fe sulfides for highly efficient electrocatalytic water oxidation in alkaline media. Electrochimica Acta, 2017, 230: 151–159

DOI

95
Zhao C, Wu J, Yang L, Fan G L, Li F. In situ growth route to fabricate ternary Co-Ni-Al mixed-metal oxide film as a promising structured catalyst for the oxidation of benzyl alcohol. Industrial & Engineering Chemistry Research, 2017, 56(15): 4237–4244

DOI

96
Liu K L, Wang F M, Shifa T A, Wang Z X, Xu K, Zhang Y, Cheng Z Z, Zhan X Y, He J. An efficient ternary CoP2xSe2(1−x) nanowire array for overall water splitting. Nanoscale, 2017, 9(11): 3995–4001

DOI

97
Dinh K N, Zheng P L, Dai Z F, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q Y. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small, 2018, 14(8): 1703257–1703265

DOI

98
Liu Y X, Bai Y, Han Y, Yu Z, Zhang S M, Wang G H, Wei J H, Wu Q B, Sun K N. Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Applied Materials & Interfaces, 2017, 9(42): 36917–36926

DOI

99
Yang Q, Li T, Lu Z Y, Sun X M, Liu J F. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale, 2014, 6(20): 11789–11794

DOI

100
Liu W, Liu H, Dang L N, Zhang H X, Wu X L, Yang B, Li Z J, Zhang X W, Lei L C, Jin S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Advanced Functional Materials, 2017, 27(14): 1603904–1603911

DOI

101
Kment S, Riboni F, Pausova S, Wang L, Wang L Y, Han H, Hubicka Z, Krysa J, Schmuki P, Zboril R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46(12): 3716–3769

DOI

102
Chong R F, Wang B Y, Su C H, Li D L, Mao L Q, Chang Z X, Zhang L. Dual-functional CoAl layered double hydroxide decorated α-Fe2O3 as an efficient and stable photoanode for photoelectrochemical water oxidation in neutral electrolyte. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8583–8590

DOI

103
Chen W J, Wang T T, Xue J W, Li S K, Wang Z D, Sun S. Cobalt-nickel layered double hydroxides modified on TiO2 nanotube arrays for highly efficient and stable PEC water splitting. Small, 2017, 13(10): 1602420–1602428

DOI

104
Zhang R K, Shao M F, Xu S M, Ning F Y, Zhou L, Wei M. Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy, 2017, 33: 21–28

DOI

105
Ning F Y, Shao M F, Xu S M, Fu Y, Zhang R K, Wei M, Evans D G, Duan X. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy & Environmental Science, 2016, 9(8): 2633–2643

DOI

106
He W H, Wang R R, Zhang L, Zhu J, Xiang X, Li F. Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(35): 17977–17982

DOI

107
Tang Y Q, Wang R R, Yang Y, Yan D P, Xiang X. Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Applied Materials & Interfaces, 2016, 8(30): 19446–19455

DOI

108
Luo P, Zhang H J, Liu L, Zhang Y, Deng J, Xu C H, Hu N, Wang Y. Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Applied Materials & Interfaces, 2017, 9(3): 2500–2508

DOI

109
Anantharaj S, Ede S R, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 2016, 6(12): 8069–8097

DOI

110
Yang Y Q, Zhang K, Ling H L, Li X, Chan H C, Yang L C, Gao Q S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366

DOI

111
Liu Y P, Li Q J, Si R, Li G D, Li W, Liu D P, Wang D J, Sun L, Zhang Y, Zou X X. Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Advanced Materials, 2017, 29(13): 1606200–1606207

DOI

112
Wang J, Xu F, Jin H Y, Chen Y Q, Wang Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Advanced Materials, 2017, 29(14): 1605838–1605845

DOI

113
Wu Y Y, Liu Y P, Li G D, Zou X, Lian X R, Wang D J, Sun L, Asefa T, Zou X X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy, 2017, 35: 161–170

DOI

114
Zhao J H, Cai L L, Li H, Shi X J, Zheng X L. Stabilizing silicon photocathodes by solution deposited Ni-Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Letters, 2017, 2(9): 1939–1946

DOI

115
Yoon T, Kim K S. One-step synthesis of CoS-doped beta-Co(OH)2@amorphous MoS2+x hybrid catalyst grown on nickel foam for high-performance electrochemical overall water splitting. Advanced Functional Materials, 2016, 26(41): 7386–7393

DOI

116
Yao L H, Wei D, Yan D P, Hu C W. ZnCr layered double hydroxide (LDH) nanosheets assisted formation of hierarchical flower-like CdZnS@LDH microstructures with improved visible-light-driven H2 production. Chemistry, an Asian Journal, 2015, 10(3): 630–636

DOI

117
Li X M, Hao X G, Abudula A, Guan G Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(31): 11973–12000

DOI

118
Zhang G H, Lin B Z, Yang W W, Jiang S F, Yao Q R, Chen Y L, Gao B F. Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer. RSC Advances, 2015, 5(8): 5823–5829

DOI

119
Zhang G H, Lin B Z, Qiu Y Q, He L W, Chen Y L, Gao B F. Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets. International Journal of Hydrogen Energy, 2015, 40(14): 4758–4765

DOI

120
Liu J, Wang J S, Zhang B, Ruan Y J, Lv L, Ji X, Xu K, Miao L, Jiang J J. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Applied Materials & Interfaces, 2017, 9(18): 15364–15372

DOI

121
Zou X, Liu Y P, Li G D, Wu Y Y, Liu D P, Li W, Li H W, Wang D J, Zhang Y, Zou X X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Advanced Materials, 2017, 29(22): 1700404–1700411

DOI

122
Dutta S, Indra A, Feng Y, Song T, Paik U. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS Applied Materials & Interfaces, 2017, 9(39): 33766–33774

DOI

123
Xia C, Jiang Q, Zhao C, Hedhili M N, Alshareef H N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Advanced Materials, 2016, 28(1): 77–85

DOI

124
Gao S, Lin Y, Jiao X C, Sun Y F, Luo Q Q, Zhang W H, Li D Q, Yang J L, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529(7584): 68–71

DOI

125
Liu C, Colon B C, Ziesack M, Silver P A, Nocera D G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 2016, 352(6290): 1210–1213

DOI

126
Dinca M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10337–10341

DOI

127
Bediako D K, Surendranath Y, Nocera D G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. Journal of the American Chemical Society, 2013, 135(9): 3662–3674

DOI

128
Yang L, Xie L S, Ge R X, Kong R M, Liu Z A, Du G, Asiri A M, Yao Y D, Luo Y L. Core-shell NiFe-LDH@NiFe-Bi nanoarray: In situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Applied Materials & Interfaces, 2017, 9(23): 19502–19506

DOI

129
You C, Ji Y Y, Liu Z A, Xiong X L, Sun X P. Ultrathin CoFe-borate layer coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1527–1531

DOI

130
Farzaneh A, Saghatoleslami N, Goharshadi E K, Gharibi H, Ahmadzadeh H. 3-D mesoporous nitrogen-doped reduced graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline fuel cells: Role of p and lone pair electrons. Electrochimica Acta, 2016, 222: 608–618

DOI

131
Kumar M P, Raju M M, Arunchander A, Selvaraj S, Kalita G, Narayanan T N, Sahu A K, Pattanayak D K. Nitrogen doped graphene as metal free electrocatalyst for efficient oxygen reduction reaction in alkaline media and its application in anion exchange membrane fuel cells. Journal of the Electrochemical Society, 2016, 163(8): F848–F855

DOI

132
Lu Z J, Bao S J, Gou Y T, Cai C J, Ji C C, Xu M W, Song J, Wang R Y. Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. RSC Advances, 2013, 3(12): 3990–3995

DOI

133
Qu L T, Liu Y, Baek J B, Dai L M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4(3): 1321–1326

DOI

134
Li J Y, Ren Z Y, Zhou Y X, Wu X J, Xu X L, Qi M, Li W L, Bai J T, Wang L. Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon, 2013, 62: 330–336

DOI

135
Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758

DOI

136
Zhang F, Zhang T F, Yang X, Zhang L, Leng K, Huang Y, Chen Y S. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science, 2013, 6(5): 1623–1632

DOI

137
Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. Supercapacitor devices based on graphene materials. Journal of Physical Chemistry C, 2009, 113(30): 13103–13107

DOI

138
Fu K, Wang Y B, Yan C Y, Yao Y G, Chen Y A, Dai J Q, Lacey S, Wang Y B, Wan J Y, Li T, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Advanced Materials, 2016, 28(13): 2587–2594

DOI

139
Hou Y, Wen Z H, Cui S M, Ci S Q, Mao S, Chen J H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Advanced Functional Materials, 2015, 25(6): 872–882

DOI

140
Zhao J W, Chen J, Xu S M, Shao M F, Zhang Q, Wei F, Ma J, Wei M, Evans D G, Duan X. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Advanced Functional Materials, 2014, 24(20): 2938–2946

DOI

141
Ping J F, Wang Y X, Lu Q P, Chen B, Chen J Z, Huang Y, Ma Q L, Tan C L, Yang J, Cao X H, Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Advanced Materials, 2016, 28(35): 7640–7645

DOI

142
Cao Y, Li G T, Li X B. Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chemical Engineering Journal, 2016, 292: 207–223

DOI

143
Yu X W, Zhang M, Yuan W J, Shi G Q. A high-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6921–6928

DOI

144
Bai X, Liu Q, Lu Z T, Liu J Y, Chen R R, Li R M, Song D L, Jing X Y, Liu P L, Wang J. Rational design of sandwiched Ni-Co layered double hydroxides hollow nanocages/graphene derived from metal-organic framework for sustainable energy storage. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9923–9934

DOI

145
Ni Y M, Yao L H, Wang Y, Liu B, Cao M H, Hu C W. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale, 2017, 9(32): 11596–11604

DOI

146
Nadeema A, Dhavale V M, Kurungot S. NiZn double hydroxide nanosheet-anchored nitrogen-doped graphene enriched with the γ-NiOOH phase as an activity modulated water oxidation electrocatalyst. Nanoscale, 2017, 9(34): 12590–12600

DOI

147
Jia X D, Gao S J, Liu T Y, Li D Q, Tang P G, Feng Y J. Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochimica Acta, 2017, 245: 59–68

DOI

148
Jia Y, Zhang L Z, Gao G P, Chen H, Wang B, Zhou J Z, Soo M T, Hong M, Yan X C, Qian G R, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Advanced Materials, 2017, 29(17): 1700017–1700024

DOI

149
Zhan T R, Zhang Y M, Liu X L, Lu S S, Hou W G. NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Journal of Power Sources, 2016, 333: 53–60

DOI

150
Li X M, Zai J T, Liu Y Y, He X B, Xiang S J, Ma Z F, Qian X F. Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances. Journal of Power Sources, 2016, 325: 675–681

DOI

151
Chen R, Sun G Z, Yang C J, Zhang L P, Miao J W, Tao H B, Yang H B, Chen J Z, Chen P, Liu B. Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons, 2016, 1(2): 156–160

DOI

152
Qiu C, Jiang J, Ai L H. When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: A synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8(1): 945–951

DOI

153
Hou Y, Lohe M R, Zhang J, Liu S H, Zhuang X D, Feng X L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy & Environmental Science, 2016, 9(2): 478–483

DOI

Outlines

/