Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting

Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei

PDF(1040 KB)
PDF(1040 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 537-554. DOI: 10.1007/s11705-018-1719-6
REVIEW ARTICLE
REVIEW ARTICLE

Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting

Author information +
History +

Abstract

Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy productions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materials have gained increasing attentions as promising electrocatalysts for water splitting. Designing LDHs into hierarchical architectures (e.g., core-shell nanoarrays) is one of the most promising strategies to improve their electrocatalytic performances, owing to the abundant exposure of active sites. This review mainly focuses on recent progress on the synthesis of hierarchical LDH-based core-shell nanoarrays as high performance electrocatalysts for electrochemical water splitting. By classifying different nanostructured materials combined with LDHs, a number of LDH-based core-shell nanoarrays have been developed and their synthesis strategies, structural characters and electrochemical performances are rationally described. Moreover, further developments and challenges in developing promising electrocatalysts based on hierarchical nanostructured LDHs are covered from the viewpoint of fundamental research and practical applications.

Graphical abstract

Keywords

layered double hydroxides (LDHs) / core-shell nanoarrays / oxygen evolution reaction (OER) / hydrogen evolution reaction (HER) / photoelectrochemical water splitting (PEC)

Cite this article

Download citation ▾
Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei. Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting. Front. Chem. Sci. Eng., 2018, 12(3): 537‒554 https://doi.org/10.1007/s11705-018-1719-6

References

[1]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Nørskov J K, Jaramillo T F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355(6321): eaad4998
[2]
Yang Y, Zhang H L, Lin Z H, Liu Y, Chen J, Lin Z Y, Zhou Y S, Wong C P, Wang Z L. A hybrid energy cell for self-powered water splitting. Energy & Environmental Science, 2013, 6(8): 2429–2434
CrossRef Google scholar
[3]
Lu Y C, Gasteiger H A, Shao-Horn Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. Journal of the American Chemical Society, 2011, 133(47): 19048–19051
CrossRef Google scholar
[4]
Zhou H Q, Yu F, Huang Y F, Sun J Y, Zhu Z, Nielsen R J, He R, Bao J M, Goddard W A III, Chen S, Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. Nature Communications, 2016, 7: 12765–12772
CrossRef Google scholar
[5]
Zhu Y P, Ma T Y, Jaroniec M, Qiao S Z. Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angewandte Chemie International Edition, 2017, 56(5): 1324–1328
CrossRef Google scholar
[6]
Li D, Baydoun H, Kulikowski B, Brock S L. Boosting the catalytic performance of iron phosphide nanorods for the oxygen evolution reaction by incorporation of manganese. Chemistry of Materials, 2017, 29(7): 3048–3054
CrossRef Google scholar
[7]
Pei Z X, Li H F, Huang Y, Xue Q, Huang Y, Zhu M S, Wang Z F, Zhi C Y. Texturing in situ: N,S-enriched hierarchically porous carbon as a highly active reversible oxygen electrocatalyst. Energy & Environmental Science, 2017, 10(3): 742–749
CrossRef Google scholar
[8]
Ren F M, Wang Z, Luo L F, Lu H Y, Zhou G, Huang W X, Hong X, Wu Y E, Li Y D. Utilization of active Ni to fabricate Pt-Ni nanoframe/NiAl layered double hydroxide multifunctional catalyst through in situ precipitation. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(38): 13181–13185
CrossRef Google scholar
[9]
Zhou L, Shao M F, Wei M, Duan X. Advances in efficient electrocatalysts based on layered double hydroxides and their derivatives. Journal of Energy Chemistry, 2017, 26(6): 1094–1106
CrossRef Google scholar
[10]
Zhang Z C, Liu Y, Chen B, Gong Y, Gu L, Fan Z X, Yang N L, Lai Z C, Chen Y, Wang J, et al. Submonolayered Ru deposited on ultrathin Pd nanosheets used for enhanced catalytic applications. Advanced Materials, 2016, 28(46): 10282–10286
CrossRef Google scholar
[11]
He D S, He D P, Wang J, Lin Y, Yin P Q, Hong X, Wu Y, Li Y D. Ultrathin icosahedral Pt-enriched nanocage with excellent oxygen reduction reaction activity. Journal of the American Chemical Society, 2016, 138(5): 1494–1497
CrossRef Google scholar
[12]
Ren F M, Lu H Y, Liu H T, Wang Z, Wu Y E, Li Y D. Surface ligand-mediated isolated growth of Pt on Pd nanocubes for enhanced hydrogen evolution activity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(47): 23660–23663
CrossRef Google scholar
[13]
Yan Y, Xia B Y, Ge X M, Liu Z L, Fisher A, Wang X. A flexible electrode based on iron phosphide nanotubes for overall water splitting. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(50): 18062–18067
CrossRef Google scholar
[14]
Qi J, Zhang W, Xiang R J, Liu K Q, Wang H Y, Chen M X, Han Y Z, Cao R. Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Advancement of Science, 2015, 2(10): 5203–5208
[15]
Cheng Y F, Liao F, Shen W, Liu L B, Jiang B B, Li Y Q, Shao M W. Carbon cloth supported cobalt phosphide as multifunctional catalysts for efficient overall water splitting and zinc-air batteries. Nanoscale, 2017, 9(47): 18977–18982
CrossRef Google scholar
[16]
Tan Y W, Wang H, Liu P, Shen Y H, Cheng C, Hirata A, Fujita T, Tang Z, Chen M W. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy & Environmental Science, 2016, 9(7): 2257–2261
CrossRef Google scholar
[17]
Zhou J, Zhuang H L L, Wang H. Layered tetragonal zinc chalcogenides for energy-related applications: From photocatalysts for water splitting to cathode materials for Li-ion batteries. Nanoscale, 2017, 9(44): 17303–17311
CrossRef Google scholar
[18]
Wang J J, Meng J, Li Q X, Yang J L. Single-layer cadmium chalcogenides: promising visible-light driven photocatalysts for water splitting. Physical Chemistry Chemical Physics, 2016, 18(25): 17029–17036
CrossRef Google scholar
[19]
Zheng J, Chen X L, Zhong X, Li S Q, Liu T Z, Zhuang G L, Li X N, Deng S W, Mei D H, Wang J G. Hierarchical porous NC@CuCo nitride nanosheet networks: Highly efficient bifunctional electrocatalyst for overall water splitting and selective electrooxidation of benzyl alcohol. Advanced Functional Materials, 2017, 27(46): 1704169–1704180
CrossRef Google scholar
[20]
Kibria M G, Chowdhury F A, Zhao S, AlOtaibi B, Trudeau M L, Guo H, Mi Z. Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays. Nature Communications, 2015, 6(1): 6797–6805
CrossRef Google scholar
[21]
Kumar A, Bhattacharyya S. Porous NiFe-oxide nanocubes as bifunctional electrocatalysts for efficient water-splitting. ACS Applied Materials & Interfaces, 2017, 9(48): 41906–41915
CrossRef Google scholar
[22]
Yang Y, Niu S W, Han D D, Liu T Y, Wang G M, Li Y. Progress in developing metal oxide nanomaterials for photoelectrochemical water splitting. Advanced Energy Materials, 2017, 7(19): 1700555–1700581
CrossRef Google scholar
[23]
Pawar S M, Pawar B S, Hou B, Kim J, Ahmed A T A, Chavan H S, Jo Y, Cho S, Inamdar A I, Gunjakar J L, Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(25): 12747–12751
CrossRef Google scholar
[24]
Zhou L, Shao M F, Li J B, Jiang S, Wei M, Duan X. Two-dimensional ultrathin arrays of CoP: Electronic modulation toward high performance overall water splitting. Nano Energy, 2017, 41: 583–590
CrossRef Google scholar
[25]
Zhang C L, Shao M F, Ning F Y, Xu S M, Li Z H, Wei M, Evans D G, Duan X. Au nanoparticles sensitized ZnO nanorod@nanoplatelet core-shell arrays for enhanced photoelectrochemical water splitting. Nano Energy, 2015, 12: 231–239
CrossRef Google scholar
[26]
Nai J W, Yin H J, You T T, Zheng L R, Zhang J, Wang P X, Jin Z, Tian Y, Liu J Z, Tang Z Y, et al. Efficient electrocatalytic water oxidation by using amorphous Ni-Co double hydroxides nanocages. Advanced Energy Materials, 2015, 5(10): 1401880–1401887
CrossRef Google scholar
[27]
Lu Z Y, Qian L, Tian Y, Li Y P, Sun X M, Duan X. Ternary NiFeMn layered double hydroxides as highly-efficient oxygen evolution catalysts. Chemical Communications, 2016, 52(5): 908–911
CrossRef Google scholar
[28]
Wang H, Zhou T T, Li P L, Cao Z, Xi W, Zhao Y F, Ding Y. Self-supported hierarchical nanostructured NiFe-LDH and Cu3P weaving mesh electrodes for efficient water splitting. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 380–388
CrossRef Google scholar
[29]
Li X M, Hao X G, Wang Z D, Abudula A, Guan G Q. In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting. Journal of Power Sources, 2017, 347: 193–200
CrossRef Google scholar
[30]
Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. Journal of the American Chemical Society, 2013, 135(23): 8452–8455
CrossRef Google scholar
[31]
Shao M F, Ning F Y, Wei M, Evans D G, Duan X. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Advanced Functional Materials, 2014, 24(5): 580–586
CrossRef Google scholar
[32]
Zhang C, Shao M F, Zhou L, Li Z H, Xiao K M, Wei M. Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction. ACS Applied Materials & Interfaces, 2016, 8(49): 33697–33703
CrossRef Google scholar
[33]
Zhou L, Shao M F, Zhang C, Zhao J W, He S, Rao D M, Wei M, Evans D G, Duan X. Hierarchical CoNi-sulfide nanosheet arrays derived from layered double hydroxides toward efficient hydrazine electrooxidation. Advanced Materials, 2016, 29(6): 1604080–1604088
CrossRef Google scholar
[34]
Han J B, Dou Y B, Zhao J W, Wei M, Evans D G, Duan X. Flexible CoAl LDH@PEDOT core/shell nanoplatelet array for high-performance energy storage. Small, 2013, 9(1): 98–106
CrossRef Google scholar
[35]
Li Z H, Shao M F, An H L, Wang Z X, Xu S M, Wei M, Evans D G, Duan X. Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions. Chemical Science (Cambridge), 2015, 6(11): 6624–6631
CrossRef Google scholar
[36]
Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation. Advanced Functional Materials, 2013, 23(28): 3513–3518
CrossRef Google scholar
[37]
Chen H, Hu L F, Chen M, Yan Y, Wu L M. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Advanced Functional Materials, 2014, 24(7): 934–942
CrossRef Google scholar
[38]
Tang D, Liu J, Wu X Y, Liu R H, Han X, Han Y Z, Huang H, Liu Y, Kang Z H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Applied Materials & Interfaces, 2014, 6(10): 7918–7925
CrossRef Google scholar
[39]
Zou X, Goswami A, Asefa T. Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide. Journal of the American Chemical Society, 2013, 135(46): 17242–17245
CrossRef Google scholar
[40]
Yang Q H, Li Z H, Zhang R K, Zhou L, Shao M F, Wei M. Carbon modified transition metal oxides/hydroxides nanoarrays toward high-performance flexible all-solid-state supercapacitors. Nano Energy, 2017, 41: 408–416
CrossRef Google scholar
[41]
Ning F Y, Shao M F, Zhang C L, Xu S M, Wei M, Duan X. Co3O4@layered double hydroxide core/shell hierarchical nanowire arrays for enhanced supercapacitance performance. Nano Energy, 2014, 7: 134–142
CrossRef Google scholar
[42]
Wang Q, O’Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chemical Reviews, 2012, 112(7): 4124–4155
CrossRef Google scholar
[43]
Li C M, Wei M, Evans D G, Duan X. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents. Small, 2014, 10(22): 4469–4486
CrossRef Google scholar
[44]
Gu Z, Atherton J J, Xu Z P. Hierarchical layered double hydroxide nanocomposites: Structure, synthesis and applications. Chemical Communications, 2015, 51(15): 3024–3036
CrossRef Google scholar
[45]
He S, An Z, Wei M, Evans D G, Duan X. Layered double hydroxide-based catalysts: Nanostructure design and catalytic performance. Chemical Communications, 2013, 49(53): 5912–5920
CrossRef Google scholar
[46]
Zhao M Q, Zhang Q, Huang J Q, Wei F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Advanced Functional Materials, 2012, 22(4): 675–694
CrossRef Google scholar
[47]
Tang C, Wang H F, Zhu X L, Li B Q, Zhang Q. Advances in hybrid electrocatalysts for oxygen evolution reactions: Rational integration of NiFe layered double hydroxides and nanocarbon. Particle & Particle Systems Characterization, 2016, 33(8): 473–486
CrossRef Google scholar
[48]
Gong M, Dai H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Research, 2015, 8(1): 23–39
CrossRef Google scholar
[49]
Ko J W, Ryu W H, Kim I D, Park C B. Bi-functional RuO2-Co3O4 core-shell nanofibers as a multi-component one-dimensional water oxidation catalyst. Chemical Communications, 2013, 49(84): 9725–9727
CrossRef Google scholar
[50]
Wang D A, Hisatomi T, Takata T, Pan C S, Katayama M, Kubota J, Domen K. Core/shell photocatalyst with spatially separated Co-catalysts for efficient reduction and oxidation of water. Angewandte Chemie International Edition, 2013, 52(43): 11252–11256
CrossRef Google scholar
[51]
Hou C C, Wang C J, Chen Q Q, Lv X J, Fu W F, Chen Y. Rapid synthesis of ultralong Fe(OH)3:Cu(OH)2 core-shell nanowires self-supported on copper foam as a highly efficient 3D electrode for water oxidation. Chemical Communications, 2016, 52(100): 14470–14473
CrossRef Google scholar
[52]
Ge R X, Ma M, Ren X, Qu F L, Liu Z, Du G, Asiri A M, Chen L, Zheng B Z, Sun X P A. NiCo2O4@Ni-Co-Ci core-shell nanowire array as an efficient electrocatalyst for water oxidation at near-neutral pH. Chemical Communications, 2017, 53(55): 7812–7815
CrossRef Google scholar
[53]
Hu C L, Zhang L, Zhao Z J, Luo J, Shi J, Huang Z Q, Gong J L. Edge sites with unsaturated coordination on core-shell Mn3O4@MnxCo3−xO4 nanostructures for electrocatalytic water oxidation. Advanced Materials, 2017, 29(36): 1701820–1701827
CrossRef Google scholar
[54]
Jiang J, Wang M, Yan W S, Liu X F, Liu J X, Yang J L, Sun L C. Highly active and durable electrocatalytic water oxidation by a NiB0.45/NiOx core-shell heterostructured nanoparticulate film. Nano Energy, 2017, 38: 175–184
CrossRef Google scholar
[55]
Li Z H, Shao M F, Yang Q H, Tang Y, Wei M, Evans D G, Duan X. Directed synthesis of carbon nanotube arrays based on layered double hydroxides toward highly-efficient bifunctional oxygen electrocatalysis. Nano Energy, 2017, 37: 98–107
CrossRef Google scholar
[56]
Lee J E, Jang Y J, Xu W Q, Feng Z X, Park H Y, Kim J Y, Kim D H. PtFe nanoparticles supported on electroactive AuPANI core@shell nanoparticles for high performance bifunctional electrocatalysis. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(26): 13692–13699
CrossRef Google scholar
[57]
Bu L Z, Shao Q, Bin E, Guo J, Yao J L, Huang X Q. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis. Journal of the American Chemical Society, 2017, 139(28): 9576–9582
CrossRef Google scholar
[58]
Li X L, Liu W, Zhang M Y, Zhong Y R, Weng Z, Mi Y Y, Zhou Y, Li M, Cha J J, Tang Z Y, et al. Strong metal-phosphide interactions in core-shell geometry for enhanced electrocatalysis. Nano Letters, 2017, 17(3): 2057–2063
CrossRef Google scholar
[59]
Zhang N, Feng Y G, Zhu X, Guo S J, Guo J, Huang X Q. Superior bifunctional liquid fuel oxidation and oxygen reduction electrocatalysis enabled by PtNiPd core-shell nanowires. Advanced Materials, 2017, 29(7): 1603774–1603781
CrossRef Google scholar
[60]
Sun X L, Li D G, Guo S J, Zhu W L, Sun S H. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale, 2016, 8(5): 2626–2631
CrossRef Google scholar
[61]
Gawande M B, Goswami A, Asefa T, Guo H Z, Biradar A V, Peng D L, Zboril R, Varma R S. Core-shell nanoparticles: Synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44(21): 7540–7590
CrossRef Google scholar
[62]
Zheng F L, Wong W T, Yung K F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Research, 2014, 7(3): 410–417
CrossRef Google scholar
[63]
Lee J E, Chung K, Jang Y H, Jang Y J, Kochuveedu S T, Li D, Kim D H. Bimetallic multifunctional core@shell plasmonic nanoparticles for localized surface plasmon resonance based sensing and electrocatalysis. Analytical Chemistry, 2012, 84(15): 6494–6500
CrossRef Google scholar
[64]
Li S Y, Qian T, Wu S S, Shen J. A facile, controllable fabrication of polystyrene/graphene core-shell microspheres and its application in high-performance electrocatalysis. Chemical Communications, 2012, 48(64): 7997–7999
CrossRef Google scholar
[65]
Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Advanced Materials, 2016, 28(42): 9266–9291
CrossRef Google scholar
[66]
Carvalho D C, Ferreira N A, Filho J M, Ferreira O P, Soares J M, Oliveira A C. Ni-Fe and Co-Fe binary oxides derived from layered double hydroxides and their catalytic evaluation for hydrogen production. Catalysis Today, 2015, 250: 155–165
CrossRef Google scholar
[67]
Yan K, Lafleur T, Chai J, Jarvis C. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution. Electrochemistry Communications, 2016, 62: 24–28
CrossRef Google scholar
[68]
Xia D C, Zhou L, Qiao S, Zhang Y L, Tang D, Liu J, Huang H, Liu Y, Kang Z H. Graphene/Ni-Fe layered double-hydroxide composite as highly active electrocatalyst for water oxidation. Materials Research Bulletin, 2016, 74: 441–446
CrossRef Google scholar
[69]
Lu Z, Xu W W, Zhu W, Yang Q, Lei X D, Liu J F, Li Y P, Sun X M, Duan X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chemical Communications, 2014, 50(49): 6479–6482
CrossRef Google scholar
[70]
Liu X H, Ma R Z, Bando Y, Sasaki T. Layered cobalt hydroxide nanocones: Microwave-assisted synthesis, exfoliation, and structural modification. Angewandte Chemie International Edition, 2010, 49(44): 8253–8256
CrossRef Google scholar
[71]
Liu R, Wang Y Y, Liu D D, Zou Y Q, Wang S Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Advanced Materials, 2017, 29(30): 1701546–1701553
CrossRef Google scholar
[72]
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angewandte Chemie International Edition, 2017, 56(21): 5867–5871
CrossRef Google scholar
[73]
Song F, Hu X L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Communications, 2014, 5: 4477–4486
CrossRef Google scholar
[74]
Liu Q Y, Wang H, Wang X N, Tong R, Zhou X L, Peng X N, Wang H B, Tao H L, Zhang Z H. Bifunctional Ni1−xFex layered double hydroxides/Ni foam electrodes for high-efficient overall water splitting: A study on compositional tuning and valence state evolution. International Journal of Hydrogen Energy, 2017, 42(8): 5560–5568
CrossRef Google scholar
[75]
Xing J H, Li H, Cheng M M C, Geyer S M, Ng K Y S. Electro-synthesis of 3D porous hierarchical Ni-Fe phosphate film/Ni foam as a high-efficiency bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(36): 13866–13873
CrossRef Google scholar
[76]
Feng J X, Xu H, Dong Y T, Ye S H, Tong Y X, Li G R. FeOOH/Co/FeOOH hybrid nanotube arrays as high-performance electrocatalysts for the oxygen evolution reaction. Angewandte Chemie International Edition, 2016, 55(11): 3694–3698
CrossRef Google scholar
[77]
Qu Y D, Medina H, Wang S W, Wang Y C, Chen C W, Su T Y, Manikandan A, Wang K Y, Shih Y C, Chang J W, et al. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction. Advanced Materials, 2016, 28(44): 9831–9838
CrossRef Google scholar
[78]
Yu L, Zhou H Q, Sun J Y, Qin F, Yu F, Bao J M, Yu Y, Chen S, Ren Z F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy & Environmental Science, 2017, 10(8): 1820–1827
CrossRef Google scholar
[79]
Yu L, Zhou H Q, Sun J Y, Qin F, Luo D, Xie L X, Yu F, Bao J M, Li Y, Yu Y, et al. Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting. Nano Energy, 2017, 41: 327–336
CrossRef Google scholar
[80]
Guan C, Zeng Z Y, Li X L, Cao X H, Fan Y, Xia X H, Pan G X, Zhang H, Fan H J. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application. Small, 2014, 10(2): 300–307
CrossRef Google scholar
[81]
Xia X H, Zhang Y Q, Chao D L, Guan C, Zhang Y J, Li L, Ge X, Bacho I M, Tu J P, Fan H J. Solution synthesis of metal oxides for electrochemical energy storage applications. Nanoscale, 2014, 6(10): 5008–5048
CrossRef Google scholar
[82]
Mai Y Y, Zhang F, Feng X L. Polymer-directed synthesis of metal oxide-containing nanomaterials for electrochemical energy storage. Nanoscale, 2014, 6(1): 106–121
CrossRef Google scholar
[83]
Shen L F, Ding B, Nie P, Cao G Z, Zhang X G. Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles. Advanced Energy Materials, 2013, 3(11): 1484–1489
CrossRef Google scholar
[84]
Benehkohal N P, Demopoulos G P. Electrophoretically self-assembled mixed metal oxide-TiO2 nano-composite film structures for photoelectrochemical energy conversion: Probing of charge recombination and electron transport resistances. Journal of Power Sources, 2013, 240: 667–675
CrossRef Google scholar
[85]
Shao M F, Ning F Y, Zhao Y F, Zhao J W, Wei M, Evans D G, Duan X. Core-shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chemistry of Materials, 2012, 24(6): 1192–1197
CrossRef Google scholar
[86]
Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X. Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. Journal of the American Chemical Society, 2012, 134(2): 1071–1077
CrossRef Google scholar
[87]
Li Z H, Shao M F, Zhou L, Zhang R K, Zhang C, Han J B, Wei M, Evans D G, Duan X. A flexible all-solid-state micro-supercapacitor based on hierarchical CuO@layered double hydroxide core-shell nanoarrays. Nano Energy, 2016, 20: 294–304
CrossRef Google scholar
[88]
Wang Z Q, Zeng S, Liu W H, Wang X W, Li Q W, Zhao Z G, Geng F X. Coupling molecularly ultrathin sheets of NiFe-layered double hydroxide on NiCo2O4 nanowire arrays for highly efficient overall water-splitting activity. ACS Applied Materials & Interfaces, 2017, 9(2): 1488–1495
CrossRef Google scholar
[89]
Xiao C L, Li Y B, Lu X Y, Zhao C. Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting. Advanced Functional Materials, 2016, 26(20): 3515–3523
CrossRef Google scholar
[90]
Wang T, Xu W C, Wang H X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochimica Acta, 2017, 257: 118–127
CrossRef Google scholar
[91]
Tang K, Wang X F, Wang M F, Xie Y M, Zhou J Q, Yan C L. Ni/Fe ratio dependence of catalytic activity in monodisperse ternary nickel iron phosphide for efficient water oxidation. Chemelectrochem, 2017, 4(9): 2150–2157
CrossRef Google scholar
[92]
Jia X D, Gao S J, Liu T Y, Li D Q, Tang P G, Feng Y J. Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochimica Acta, 2017, 245: 51–60
CrossRef Google scholar
[93]
Wang T, Xu W C, Wang H X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochimica Acta, 2017, 257: 118–127
CrossRef Google scholar
[94]
Zhao X, Shang X, Quan Y, Dong B, Han G Q, Li X, Liu Y R, Chen Q, Chai Y M, Liu C G. Electrodeposition-solvothermal access to ternary mixed metal Ni-Co-Fe sulfides for highly efficient electrocatalytic water oxidation in alkaline media. Electrochimica Acta, 2017, 230: 151–159
CrossRef Google scholar
[95]
Zhao C, Wu J, Yang L, Fan G L, Li F. In situ growth route to fabricate ternary Co-Ni-Al mixed-metal oxide film as a promising structured catalyst for the oxidation of benzyl alcohol. Industrial & Engineering Chemistry Research, 2017, 56(15): 4237–4244
CrossRef Google scholar
[96]
Liu K L, Wang F M, Shifa T A, Wang Z X, Xu K, Zhang Y, Cheng Z Z, Zhan X Y, He J. An efficient ternary CoP2xSe2(1−x) nanowire array for overall water splitting. Nanoscale, 2017, 9(11): 3995–4001
CrossRef Google scholar
[97]
Dinh K N, Zheng P L, Dai Z F, Zhang Y, Dangol R, Zheng Y, Li B, Zong Y, Yan Q Y. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small, 2018, 14(8): 1703257–1703265
CrossRef Google scholar
[98]
Liu Y X, Bai Y, Han Y, Yu Z, Zhang S M, Wang G H, Wei J H, Wu Q B, Sun K N. Self-supported hierarchical FeCoNi-LTH/NiCo2O4/CC electrodes with enhanced bifunctional performance for efficient overall water splitting. ACS Applied Materials & Interfaces, 2017, 9(42): 36917–36926
CrossRef Google scholar
[99]
Yang Q, Li T, Lu Z Y, Sun X M, Liu J F. Hierarchical construction of an ultrathin layered double hydroxide nanoarray for highly-efficient oxygen evolution reaction. Nanoscale, 2014, 6(20): 11789–11794
CrossRef Google scholar
[100]
Liu W, Liu H, Dang L N, Zhang H X, Wu X L, Yang B, Li Z J, Zhang X W, Lei L C, Jin S. Amorphous cobalt-iron hydroxide nanosheet electrocatalyst for efficient electrochemical and photo-electrochemical oxygen evolution. Advanced Functional Materials, 2017, 27(14): 1603904–1603911
CrossRef Google scholar
[101]
Kment S, Riboni F, Pausova S, Wang L, Wang L Y, Han H, Hubicka Z, Krysa J, Schmuki P, Zboril R. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting-superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46(12): 3716–3769
CrossRef Google scholar
[102]
Chong R F, Wang B Y, Su C H, Li D L, Mao L Q, Chang Z X, Zhang L. Dual-functional CoAl layered double hydroxide decorated α-Fe2O3 as an efficient and stable photoanode for photoelectrochemical water oxidation in neutral electrolyte. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(18): 8583–8590
CrossRef Google scholar
[103]
Chen W J, Wang T T, Xue J W, Li S K, Wang Z D, Sun S. Cobalt-nickel layered double hydroxides modified on TiO2 nanotube arrays for highly efficient and stable PEC water splitting. Small, 2017, 13(10): 1602420–1602428
CrossRef Google scholar
[104]
Zhang R K, Shao M F, Xu S M, Ning F Y, Zhou L, Wei M. Photo-assisted synthesis of zinc-iron layered double hydroxides/TiO2 nanoarrays toward highly-efficient photoelectrochemical water splitting. Nano Energy, 2017, 33: 21–28
CrossRef Google scholar
[105]
Ning F Y, Shao M F, Xu S M, Fu Y, Zhang R K, Wei M, Evans D G, Duan X. TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy & Environmental Science, 2016, 9(8): 2633–2643
CrossRef Google scholar
[106]
He W H, Wang R R, Zhang L, Zhu J, Xiang X, Li F. Enhanced photoelectrochemical water oxidation on a BiVO4 photoanode modified with multi-functional layered double hydroxide nanowalls. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(35): 17977–17982
CrossRef Google scholar
[107]
Tang Y Q, Wang R R, Yang Y, Yan D P, Xiang X. Highly enhanced photoelectrochemical water oxidation efficiency based on triadic quantum dot/layered double hydroxide/BiVO4 photoanodes. ACS Applied Materials & Interfaces, 2016, 8(30): 19446–19455
CrossRef Google scholar
[108]
Luo P, Zhang H J, Liu L, Zhang Y, Deng J, Xu C H, Hu N, Wang Y. Targeted synthesis of unique nickel sulfide (NiS, NiS2) microarchitectures and the applications for the enhanced water splitting system. ACS Applied Materials & Interfaces, 2017, 9(3): 2500–2508
CrossRef Google scholar
[109]
Anantharaj S, Ede S R, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review. ACS Catalysis, 2016, 6(12): 8069–8097
CrossRef Google scholar
[110]
Yang Y Q, Zhang K, Ling H L, Li X, Chan H C, Yang L C, Gao Q S. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366
CrossRef Google scholar
[111]
Liu Y P, Li Q J, Si R, Li G D, Li W, Liu D P, Wang D J, Sun L, Zhang Y, Zou X X. Coupling sub-nanometric copper clusters with quasi-amorphous cobalt sulfide yields efficient and robust electrocatalysts for water splitting reaction. Advanced Materials, 2017, 29(13): 1606200–1606207
CrossRef Google scholar
[112]
Wang J, Xu F, Jin H Y, Chen Y Q, Wang Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Advanced Materials, 2017, 29(14): 1605838–1605845
CrossRef Google scholar
[113]
Wu Y Y, Liu Y P, Li G D, Zou X, Lian X R, Wang D J, Sun L, Asefa T, Zou X X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy, 2017, 35: 161–170
CrossRef Google scholar
[114]
Zhao J H, Cai L L, Li H, Shi X J, Zheng X L. Stabilizing silicon photocathodes by solution deposited Ni-Fe layered double hydroxide for efficient hydrogen evolution in alkaline media. ACS Energy Letters, 2017, 2(9): 1939–1946
CrossRef Google scholar
[115]
Yoon T, Kim K S. One-step synthesis of CoS-doped beta-Co(OH)2@amorphous MoS2+x hybrid catalyst grown on nickel foam for high-performance electrochemical overall water splitting. Advanced Functional Materials, 2016, 26(41): 7386–7393
CrossRef Google scholar
[116]
Yao L H, Wei D, Yan D P, Hu C W. ZnCr layered double hydroxide (LDH) nanosheets assisted formation of hierarchical flower-like CdZnS@LDH microstructures with improved visible-light-driven H2 production. Chemistry, an Asian Journal, 2015, 10(3): 630–636
CrossRef Google scholar
[117]
Li X M, Hao X G, Abudula A, Guan G Q. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2016, 4(31): 11973–12000
CrossRef Google scholar
[118]
Zhang G H, Lin B Z, Yang W W, Jiang S F, Yao Q R, Chen Y L, Gao B F. Highly efficient photocatalytic hydrogen generation by incorporating CdS into ZnCr-layered double hydroxide interlayer. RSC Advances, 2015, 5(8): 5823–5829
CrossRef Google scholar
[119]
Zhang G H, Lin B Z, Qiu Y Q, He L W, Chen Y L, Gao B F. Highly efficient visible-light-driven photocatalytic hydrogen generation by immobilizing CdSe nanocrystals on ZnCr-layered double hydroxide nanosheets. International Journal of Hydrogen Energy, 2015, 40(14): 4758–4765
CrossRef Google scholar
[120]
Liu J, Wang J S, Zhang B, Ruan Y J, Lv L, Ji X, Xu K, Miao L, Jiang J J. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Applied Materials & Interfaces, 2017, 9(18): 15364–15372
CrossRef Google scholar
[121]
Zou X, Liu Y P, Li G D, Wu Y Y, Liu D P, Li W, Li H W, Wang D J, Zhang Y, Zou X X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Advanced Materials, 2017, 29(22): 1700404–1700411
CrossRef Google scholar
[122]
Dutta S, Indra A, Feng Y, Song T, Paik U. Self-supported nickel iron layered double hydroxide-nickel selenide electrocatalyst for superior water splitting activity. ACS Applied Materials & Interfaces, 2017, 9(39): 33766–33774
CrossRef Google scholar
[123]
Xia C, Jiang Q, Zhao C, Hedhili M N, Alshareef H N. Selenide-based electrocatalysts and scaffolds for water oxidation applications. Advanced Materials, 2016, 28(1): 77–85
CrossRef Google scholar
[124]
Gao S, Lin Y, Jiao X C, Sun Y F, Luo Q Q, Zhang W H, Li D Q, Yang J L, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature, 2016, 529(7584): 68–71
CrossRef Google scholar
[125]
Liu C, Colon B C, Ziesack M, Silver P A, Nocera D G. Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science, 2016, 352(6290): 1210–1213
CrossRef Google scholar
[126]
Dinca M, Surendranath Y, Nocera D G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(23): 10337–10341
CrossRef Google scholar
[127]
Bediako D K, Surendranath Y, Nocera D G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. Journal of the American Chemical Society, 2013, 135(9): 3662–3674
CrossRef Google scholar
[128]
Yang L, Xie L S, Ge R X, Kong R M, Liu Z A, Du G, Asiri A M, Yao Y D, Luo Y L. Core-shell NiFe-LDH@NiFe-Bi nanoarray: In situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media. ACS Applied Materials & Interfaces, 2017, 9(23): 19502–19506
CrossRef Google scholar
[129]
You C, Ji Y Y, Liu Z A, Xiong X L, Sun X P. Ultrathin CoFe-borate layer coated CoFe-layered double hydroxide nanosheets array: A non-noble-metal 3D catalyst electrode for efficient and durable water oxidation in potassium borate. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 1527–1531
CrossRef Google scholar
[130]
Farzaneh A, Saghatoleslami N, Goharshadi E K, Gharibi H, Ahmadzadeh H. 3-D mesoporous nitrogen-doped reduced graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline fuel cells: Role of p and lone pair electrons. Electrochimica Acta, 2016, 222: 608–618
CrossRef Google scholar
[131]
Kumar M P, Raju M M, Arunchander A, Selvaraj S, Kalita G, Narayanan T N, Sahu A K, Pattanayak D K. Nitrogen doped graphene as metal free electrocatalyst for efficient oxygen reduction reaction in alkaline media and its application in anion exchange membrane fuel cells. Journal of the Electrochemical Society, 2016, 163(8): F848–F855
CrossRef Google scholar
[132]
Lu Z J, Bao S J, Gou Y T, Cai C J, Ji C C, Xu M W, Song J, Wang R Y. Nitrogen-doped reduced-graphene oxide as an efficient metal-free electrocatalyst for oxygen reduction in fuel cells. RSC Advances, 2013, 3(12): 3990–3995
CrossRef Google scholar
[133]
Qu L T, Liu Y, Baek J B, Dai L M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano, 2010, 4(3): 1321–1326
CrossRef Google scholar
[134]
Li J Y, Ren Z Y, Zhou Y X, Wu X J, Xu X L, Qi M, Li W L, Bai J T, Wang L. Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response. Carbon, 2013, 62: 330–336
CrossRef Google scholar
[135]
Wei D C, Liu Y Q, Wang Y, Zhang H L, Huang L P, Yu G. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Letters, 2009, 9(5): 1752–1758
CrossRef Google scholar
[136]
Zhang F, Zhang T F, Yang X, Zhang L, Leng K, Huang Y, Chen Y S. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science, 2013, 6(5): 1623–1632
CrossRef Google scholar
[137]
Wang Y, Shi Z Q, Huang Y, Ma Y F, Wang C Y, Chen M M, Chen Y S. Supercapacitor devices based on graphene materials. Journal of Physical Chemistry C, 2009, 113(30): 13103–13107
CrossRef Google scholar
[138]
Fu K, Wang Y B, Yan C Y, Yao Y G, Chen Y A, Dai J Q, Lacey S, Wang Y B, Wan J Y, Li T, Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Advanced Materials, 2016, 28(13): 2587–2594
CrossRef Google scholar
[139]
Hou Y, Wen Z H, Cui S M, Ci S Q, Mao S, Chen J H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Advanced Functional Materials, 2015, 25(6): 872–882
CrossRef Google scholar
[140]
Zhao J W, Chen J, Xu S M, Shao M F, Zhang Q, Wei F, Ma J, Wei M, Evans D G, Duan X. Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Advanced Functional Materials, 2014, 24(20): 2938–2946
CrossRef Google scholar
[141]
Ping J F, Wang Y X, Lu Q P, Chen B, Chen J Z, Huang Y, Ma Q L, Tan C L, Yang J, Cao X H, Self-assembly of single-layer CoAl-layered double hydroxide nanosheets on 3D graphene network used as highly efficient electrocatalyst for oxygen evolution reaction. Advanced Materials, 2016, 28(35): 7640–7645
CrossRef Google scholar
[142]
Cao Y, Li G T, Li X B. Graphene/layered double hydroxide nanocomposite: Properties, synthesis, and applications. Chemical Engineering Journal, 2016, 292: 207–223
CrossRef Google scholar
[143]
Yu X W, Zhang M, Yuan W J, Shi G Q. A high-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6921–6928
CrossRef Google scholar
[144]
Bai X, Liu Q, Lu Z T, Liu J Y, Chen R R, Li R M, Song D L, Jing X Y, Liu P L, Wang J. Rational design of sandwiched Ni-Co layered double hydroxides hollow nanocages/graphene derived from metal-organic framework for sustainable energy storage. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9923–9934
CrossRef Google scholar
[145]
Ni Y M, Yao L H, Wang Y, Liu B, Cao M H, Hu C W. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core-shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale, 2017, 9(32): 11596–11604
CrossRef Google scholar
[146]
Nadeema A, Dhavale V M, Kurungot S. NiZn double hydroxide nanosheet-anchored nitrogen-doped graphene enriched with the γ-NiOOH phase as an activity modulated water oxidation electrocatalyst. Nanoscale, 2017, 9(34): 12590–12600
CrossRef Google scholar
[147]
Jia X D, Gao S J, Liu T Y, Li D Q, Tang P G, Feng Y J. Fabrication and bifunctional electrocatalytic performance of ternary CoNiMn layered double hydroxides/polypyrrole/reduced graphene oxide composite for oxygen reduction and evolution reactions. Electrochimica Acta, 2017, 245: 59–68
CrossRef Google scholar
[148]
Jia Y, Zhang L Z, Gao G P, Chen H, Wang B, Zhou J Z, Soo M T, Hong M, Yan X C, Qian G R, et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Advanced Materials, 2017, 29(17): 1700017–1700024
CrossRef Google scholar
[149]
Zhan T R, Zhang Y M, Liu X L, Lu S S, Hou W G. NiFe layered double hydroxide/reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for oxygen evolution and reduction reactions. Journal of Power Sources, 2016, 333: 53–60
CrossRef Google scholar
[150]
Li X M, Zai J T, Liu Y Y, He X B, Xiang S J, Ma Z F, Qian X F. Atomically thin layered NiFe double hydroxides assembled 3D microspheres with promoted electrochemical performances. Journal of Power Sources, 2016, 325: 675–681
CrossRef Google scholar
[151]
Chen R, Sun G Z, Yang C J, Zhang L P, Miao J W, Tao H B, Yang H B, Chen J Z, Chen P, Liu B. Achieving stable and efficient water oxidation by incorporating NiFe layered double hydroxide nanoparticles into aligned carbon nanotubes. Nanoscale Horizons, 2016, 1(2): 156–160
CrossRef Google scholar
[152]
Qiu C, Jiang J, Ai L H. When layered nickel-cobalt silicate hydroxide nanosheets meet carbon nanotubes: A synergetic coaxial nanocable structure for enhanced electrocatalytic water oxidation. ACS Applied Materials & Interfaces, 2016, 8(1): 945–951
CrossRef Google scholar
[153]
Hou Y, Lohe M R, Zhang J, Liu S H, Zhuang X D, Feng X L. Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: An efficient 3D electrode for overall water splitting. Energy & Environmental Science, 2016, 9(2): 478–483
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. ), the 973 Program (Grant No. 2014CB932102) and the Fundamental Research Funds for the Central Universities (bsbuctylkxj01 and buctrc201506).

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1040 KB)

Accesses

Citations

Detail

Sections
Recommended

/