REVIEW ARTICLE

A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage

  • Huaping Zhao ,
  • Long Liu ,
  • Yong Lei
Expand
  • Institute of Physics and IMN MacroNano®, Ilmenau University of Technology, Ilmenau 98693, Germany

Received date: 20 Nov 2017

Accepted date: 09 Jan 2018

Published date: 18 Sep 2018

Copyright

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Nanostructures have drawn great attentions for functional device applications. Among the various techniques developed for fabricating arrayed nanostructures of functional materials, nanostructuring technique with porous anodic aluminum oxide (AAO) membrane as templates becomes more attractive owing to the superior geometrical characteristics and low-cost preparation process. In this mini review, we summarize our recent progress about functional nanostructuring based on perfectly-ordered AAO membrane to prepare perfectly-ordered nanostructure arrays of functional materials toward constructing high-performance energy conversion and storage devices. By employing the perfectly-ordered AAO membrane as templates, arrayed nanostructures in the form of nanodot, nanorod, nanotube and nanopore have been synthesized over a large area. These as-obtained nanostructure arrays have large specific surface area, high regularity, large-scale implementation, and tunable nanoscale features. All these advanced features enable them to be of great advantage for the performance improvement of energy conversion and storage devices, including photoelectrochemical water splitting cells, supercapacitors, and batteries, etc.

Cite this article

Huaping Zhao , Long Liu , Yong Lei . A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(3) : 481 -493 . DOI: 10.1007/s11705-018-1707-x

Acknowledgements

The authors acknowledge funding from the European Research Council (ThreeDsurface: 240144), European Research Council (HiNaPc: 737616), BMBF (ZIK-3DNanoDevice: 03Z1MN11), BMBF (Meta-ZIK-BioLithoMorphie: 03Z1M512), and German Research Foundation (DFG: LE 2249_4-1) for the financial support to this work.
1
Dincer I. Renewable energy and sustainable development: A crucial review. Renewable & Sustainable Energy Reviews, 2000, 4(2): 157–175

DOI

2
Liu L, Liu W, Zhao X, Chen D, Cai R, Yang W, Komarneni S, Yang D. Selective capture of iodide from solutions by microrosette-like δ-Bi2O3. ACS Applied Materials & Interfaces, 2014, 6(18): 16082–16090

DOI

3
Aricò A S, Bruce P, Scrosati B, Tarascon J M, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377

DOI

4
Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 2008, 20(15): 2878–2887

DOI

5
Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff G L, Pederson L R, Zhang J G. Oriented nanostructures for energy conversion and storage. ChemSusChem, 2008, 1(8-9): 676–697

DOI

6
Zhang Q, Uchaker E, Candelaria S L, Cao G. Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42(7): 3127–3171

DOI

7
Liu L, Yang X, Lv C, Zhu A, Zhu X, Guo S, Chen C, Yang D. Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Applied Materials & Interfaces, 2016, 8(11): 7047–7053

DOI

8
Liu L, Yang X, Ma N, Liu H, Xia Y, Chen C, Yang D, Yao X. Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small, 2015, 12(10): 1295–1301

DOI

9
Zhao H, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Advancement of Science, 2017, 4(10): 1700188

10
Xu Y, Zhou M, Lei Y. Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Advanced Energy Materials, 2016, 6(10): 1502514

DOI

11
Wen L, Zhou M, Wang C, Mi Y, Lei Y. Nanoengineering energy conversion and storage devices via atomic layer deposition. Advanced Energy Materials, 2016, 6(23): 1600468

DOI

12
Zhou M, Xu Y, Xiang J, Wang C, Liang L, Wen L, Fang Y, Mi Y, Lei Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Advanced Energy Materials, 2016, 6(23): 1600448

DOI

13
Wen L, Wang Z, Mi Y, Xu R, Yu S H, Lei Y. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small, 2015, 11(28): 3408–3428

DOI

14
Wen L, Mi Y, Wang C, Fang Y, Grote F, Zhao H, Zhou M, Lei Y. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: Application for high performance supercapacitor. Small, 2014, 10(15): 3162–3168

DOI

15
Yang S, Lapsley M I, Cao B, Zhao C, Zhao Y, Hao Q, Kiraly B, Scott J, Li W, Wang L, Lei Y, et al. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition. Advanced Functional Materials, 2013, 23(6): 720–730

DOI

16
Zhang J, Wang S, Zhang S, Tao Q, Pan L, Wang Z, Zhang Z, Lei Y, Yang S, Zhao H. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 solid nanobowls toward smart heat storage. Journal of Physical Chemistry C, 2011, 115(41): 20061–20066

DOI

17
Lei Y, Chim W, Sun H, Wilde G. Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. Applied Physics Letters, 2005, 86(10): 103106

DOI

18
Chen W, Cai W, Lei Y, Zhang L. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Materials Letters, 2001, 50(2): 53–56

DOI

19
Zhu H, Xiao C, Cheng H, Grote F, Zhang X, Yao T, Li Z, Wang C, Wei S, Lei Y, Xie Y. Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nature Communications, 2014, 5: 3960

DOI

20
Wang S, Wang M, Lei Y, Zhang L. “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites. Journal of Materials Science Letters, 1999, 18(24): 2009–2012

DOI

21
Lei Y, Yang S, Wu M, Wilde G. Surface patterning using templates: Concept, properties and device applications. Chemical Society Reviews, 2011, 40(3): 1247–1258

DOI

22
Zhao H, Zhou M, Wen L, Lei Y. Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy, 2015, 13: 790–813

DOI

23
Al-Haddad A, Zhan Z, Wang C, Tarish S, Vellacheria R, Lei Y. Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning. ACS Nano, 2015, 9(8): 8584–8591

DOI

24
Wang Z, Cao D, Xu R, Qu S, Wang Z, Lei Y. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy, 2016, 19: 328–362

DOI

25
Fu Q, Zhan Z, Dou J, Zheng X, Xu R, Wu M, Lei Y. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Applied Materials & Interfaces, 2015, 7(24): 13322–13328

DOI

26
Zhao S, Roberge H, Yelon A, Veres T. New application of AAO template: A mold for nanoring and nanocone arrays. Journal of the American Chemical Society, 2006, 128(38): 12352–12353

DOI

27
Liang J, Chik H, Yin A, Xu J. Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. Journal of Applied Physics, 2002, 91(4): 2544–2546

DOI

28
Zhao H, Wang C, Vellacheri R, Zhou M, Xu Y, Fu Q, Wu M, Grote F, Lei Y. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Advanced Materials, 2014, 26(45): 7654–7659

DOI

29
Wen L, Xu R, Mi Y, Lei Y. Multiple nanostructures based on anodized aluminium oxide templates. Nature Nanotechnology, 2017, 12(3): 244–250

DOI

30
Lei Y. Functional nanostructuring for efficient energy conversion and storage. Advanced Energy Materials, 2016, 6(23): 1600461

DOI

31
Tan F, Wang Z, Qu S, Cao D, Liu K, Jiang Q, Yang Y, Pang S, Zhang W, Lei Y, A CdSe thin film: A versatile buffer layer for improving the performance of TiO2 nanorod array: PbS quantum dot solar cells. Nanoscale, 2016, 8(19): 10198–10204

DOI

32
Liu L, Hou H, Wang L, Xu R, Lei Y, Shen S, Yang D, Yang W. A transparent CdS@TiO2 nanotextile photoanode with boosted photoelectrocatalytic efficiency and stability. Nanoscale, 2017, 9(40): 15650–15657

DOI

33
Al-Haddad A, Wang Z, Zhou M, Tarish S, Vellacheri R, Lei Y. Constructing well-ordered CdTe/TiO2 Core/Shell nanowire arrays for solar energy conversion. Small, 2016, 12(40): 5538–5542

DOI

34
Chi D, Lu S, Xu R, Liu K, Cao D, Wen L, Mi Y, Wang Z, Lei Y, Qu S, Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale, 2015, 7(37): 15251–15257

DOI

35
Mi Y, Wen L, Xu R, Wang Z, Cao D, Fang Y, Lei Y. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Advanced Energy Materials, 2016, 6(1): 1501496

DOI

36
Xu R, Wen L, Wang Z, Zhao H, Xu S, Mi Y, Xu Y, Sommerfeld M, Fang Y, Lei Y. Three-dimensional plasmonic nanostructure design for boosting photoelectrochemical activity. ACS Nano, 2017, 11(7): 7382–7389

DOI

37
Zhan Z, Lei Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano, 2014, 8(4): 3862–3868

DOI

38
Zhan Z, Xu R, Mi Y, Zhao H, Lei Y. Highly controllable surface plasmon resonance property by heights of ordered nanoparticle arrays fabricated via a nonlithographic route. ACS Nano, 2015, 9(4): 583–4590

DOI

39
Wang Z, Cao D, Wen L, Xu R, Obergfell M, Mi Y, Zhan Z, Nasori N, Demsar J, Lei Y. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications. Nature Communications, 2016, 7: 10348

DOI

40
Liu L, Zhao H, Wang Y, Fang Y, Xie J, Lei Y. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layer. Advanced Functional Materials, 2018, 28(6): 1705107

DOI

41
Xu Y, Zhou M, Zhang C, Wang C, Liang L, Fang Y, Wu M, Cheng L, Le Y. Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy, 2017, 38: 304–312

DOI

42
Wang C, Fang Y, Xu Y, Liang L, Zhou M, Zhao H, Lei Y. Manipulation of disodium rhodizonate: Factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability. Advanced Functional Materials, 2016, 26(11): 1777–1786

DOI

43
Zhou M, Xu Y, Wang C, Li Q, Xiang J, Liang L, Wu M, Zhao H, Lei Y. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524

DOI

44
Liang L, Xu Y, Wen L, Li Y, Zhou M, Wang C, Zhao H, Kaiser U, Lei Y. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Research, 2017, 10(9): 3189–3201

DOI

45
Liang L, Xu Y, Li Y, Dong H, Zhou M, Zhao H, Kaiser U, Lei Y. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(4): 1749–1755

DOI

46
Liang L, Xu Y, Wang C, Wen L, Fang Y, Mi Y, Zhou M, Zhao H, Lei Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy & Environmental Science, 2015, 8(10): 2954–2962

DOI

47
Xu Y, Zhou M, Wen L, Wang C, Zhao H, Mi Y, Liang L, Fu Q, Wu M, Lei Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chemistry of Materials, 2015, 27(12): 4274–4280

DOI

48
Vellacheri R, Al-Haddad A, Zhao H, Wang W, Wang C, Lei Y. High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy, 2014, 8: 231–237

DOI

49
Grote F, Zhao H, Lei Y. Self-supported carbon coated TiN nanotube arrays: Innovative carbon coating leads to an improved cycling ability for supercapacitor applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3465–3470

DOI

50
Grote F, Lei Y. A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy, 2014, 10: 63–70

DOI

51
Grote F, Kühnel R S, Balducci A, Lei Y. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Applied Physics Letters, 2014, 104(5): 053904

DOI

52
Grote F, Wen L, Lei Y. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. Journal of Power Sources, 2014, 256: 37–42

DOI

53
Vellacheri R, Zhao H, Mühlstädt M, Al-Haddad A, Jandt K D, Lei Y. Rationally engineered electrodes for a high-performance solid-state cable-type supercapacitor. Advanced Functional Materials, 2017, 27(18): 1606696

DOI

54
Vellacheri R, Zhao H, Mühlstädt M, Ming J, Al-Haddad A, Wu M, Jandt K D, Lei Y. All-solid-state cable-type supercapacitors with ultrahigh rate capability. Advanced Materials Technologies, 2016, 1(1): 1600012

DOI

55
Nitti A, Signorile M, Boiocchi M, Bianchi G, Po R, Pasini D. Conjugated thiophene-fused isatin dyes through intramolecular direct arylation. Journal of Organic Chemistry, 2016, 81(22): 11035–11042

DOI

56
Nitti A, Bianchi G, Po R, Swager T M, Pasini D. Domino direct arylation and cross-aldol for rapid construction of extended polycyclic p-scaffolds. Journal of the American Chemical Society, 2017, 139(26): 8788–8791

DOI

57
Nitti A, Po R, Bianchi G, Pasini D. Direct arylation strategies in the synthesis of p-extended monomers for organic polymeric solar cells. Molecules (Basel, Switzerland), 2016, 22(1): 21

DOI

58
Xu Y, Zhou M, Lei Y. Organic materials for rechargeable sodium-ion batteries. Materials Today, 2018, 21(1): 60–78

DOI

59
Wang C, Jiang C, Xu Y, Liang L, Zhou M, Jiang J, Singh S, Zhao H, Schober A, Lei Y. A selectively permeable membrane for enhancing cyclability of organic sodium-ion batteries. Advanced Materials, 2016, 28(41): 9182–9187

DOI

60
Wang C, Xu Y, Fang Y, Zhou M, Liang L, Singh S, Zhao H, Schober A, Lei Y. Extended p-conjugated system for fast-charge and-discharge sodium-ion batteries. Journal of the American Chemical Society, 2015, 137(8): 3124–3130

DOI

Outlines

/