A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage

Huaping Zhao, Long Liu, Yong Lei

PDF(958 KB)
PDF(958 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (3) : 481-493. DOI: 10.1007/s11705-018-1707-x
REVIEW ARTICLE
REVIEW ARTICLE

A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage

Author information +
History +

Abstract

Nanostructures have drawn great attentions for functional device applications. Among the various techniques developed for fabricating arrayed nanostructures of functional materials, nanostructuring technique with porous anodic aluminum oxide (AAO) membrane as templates becomes more attractive owing to the superior geometrical characteristics and low-cost preparation process. In this mini review, we summarize our recent progress about functional nanostructuring based on perfectly-ordered AAO membrane to prepare perfectly-ordered nanostructure arrays of functional materials toward constructing high-performance energy conversion and storage devices. By employing the perfectly-ordered AAO membrane as templates, arrayed nanostructures in the form of nanodot, nanorod, nanotube and nanopore have been synthesized over a large area. These as-obtained nanostructure arrays have large specific surface area, high regularity, large-scale implementation, and tunable nanoscale features. All these advanced features enable them to be of great advantage for the performance improvement of energy conversion and storage devices, including photoelectrochemical water splitting cells, supercapacitors, and batteries, etc.

Graphical abstract

Keywords

nanostructuring / perfectly-ordered AAO template / photoelectrochemical water splitting / sodium-ion batteries / supercapacitors

Cite this article

Download citation ▾
Huaping Zhao, Long Liu, Yong Lei. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage. Front. Chem. Sci. Eng., 2018, 12(3): 481‒493 https://doi.org/10.1007/s11705-018-1707-x

References

[1]
Dincer I. Renewable energy and sustainable development: A crucial review. Renewable & Sustainable Energy Reviews, 2000, 4(2): 157–175
CrossRef Google scholar
[2]
Liu L, Liu W, Zhao X, Chen D, Cai R, Yang W, Komarneni S, Yang D. Selective capture of iodide from solutions by microrosette-like δ-Bi2O3. ACS Applied Materials & Interfaces, 2014, 6(18): 16082–16090
CrossRef Google scholar
[3]
Aricò A S, Bruce P, Scrosati B, Tarascon J M, Van Schalkwijk W. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377
CrossRef Google scholar
[4]
Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 2008, 20(15): 2878–2887
CrossRef Google scholar
[5]
Liu J, Cao G, Yang Z, Wang D, Dubois D, Zhou X, Graff G L, Pederson L R, Zhang J G. Oriented nanostructures for energy conversion and storage. ChemSusChem, 2008, 1(8-9): 676–697
CrossRef Google scholar
[6]
Zhang Q, Uchaker E, Candelaria S L, Cao G. Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42(7): 3127–3171
CrossRef Google scholar
[7]
Liu L, Yang X, Lv C, Zhu A, Zhu X, Guo S, Chen C, Yang D. Seaweed-derived route to Fe2O3 hollow nanoparticles/N-doped graphene aerogels with high lithium ion storage performance. ACS Applied Materials & Interfaces, 2016, 8(11): 7047–7053
CrossRef Google scholar
[8]
Liu L, Yang X, Ma N, Liu H, Xia Y, Chen C, Yang D, Yao X. Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small, 2015, 12(10): 1295–1301
CrossRef Google scholar
[9]
Zhao H, Liu L, Vellacheri R, Lei Y. Recent advances in designing and fabricating self-supported nanoelectrodes for supercapacitors. Advancement of Science, 2017, 4(10): 1700188
[10]
Xu Y, Zhou M, Lei Y. Nanoarchitectured array electrodes for rechargeable lithium- and sodium-ion batteries. Advanced Energy Materials, 2016, 6(10): 1502514
CrossRef Google scholar
[11]
Wen L, Zhou M, Wang C, Mi Y, Lei Y. Nanoengineering energy conversion and storage devices via atomic layer deposition. Advanced Energy Materials, 2016, 6(23): 1600468
CrossRef Google scholar
[12]
Zhou M, Xu Y, Xiang J, Wang C, Liang L, Wen L, Fang Y, Mi Y, Lei Y. Understanding the orderliness of atomic arrangement toward enhanced sodium storage. Advanced Energy Materials, 2016, 6(23): 1600448
CrossRef Google scholar
[13]
Wen L, Wang Z, Mi Y, Xu R, Yu S H, Lei Y. Designing heterogeneous 1D nanostructure arrays based on AAO templates for energy applications. Small, 2015, 11(28): 3408–3428
CrossRef Google scholar
[14]
Wen L, Mi Y, Wang C, Fang Y, Grote F, Zhao H, Zhou M, Lei Y. Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: Application for high performance supercapacitor. Small, 2014, 10(15): 3162–3168
CrossRef Google scholar
[15]
Yang S, Lapsley M I, Cao B, Zhao C, Zhao Y, Hao Q, Kiraly B, Scott J, Li W, Wang L, Lei Y, et al. Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition. Advanced Functional Materials, 2013, 23(6): 720–730
CrossRef Google scholar
[16]
Zhang J, Wang S, Zhang S, Tao Q, Pan L, Wang Z, Zhang Z, Lei Y, Yang S, Zhao H. In situ synthesis and phase change properties of Na2SO4·10H2O@SiO2 solid nanobowls toward smart heat storage. Journal of Physical Chemistry C, 2011, 115(41): 20061–20066
CrossRef Google scholar
[17]
Lei Y, Chim W, Sun H, Wilde G. Highly ordered CdS nanoparticle arrays on silicon substrates and photoluminescence properties. Applied Physics Letters, 2005, 86(10): 103106
CrossRef Google scholar
[18]
Chen W, Cai W, Lei Y, Zhang L. A sonochemical approach to the confined synthesis of palladium nanoparticles in mesoporous silica. Materials Letters, 2001, 50(2): 53–56
CrossRef Google scholar
[19]
Zhu H, Xiao C, Cheng H, Grote F, Zhang X, Yao T, Li Z, Wang C, Wei S, Lei Y, Xie Y. Magnetocaloric effects in a freestanding and flexible graphene-based superlattice synthesized with a spatially confined reaction. Nature Communications, 2014, 5: 3960
CrossRef Google scholar
[20]
Wang S, Wang M, Lei Y, Zhang L. “Anchor effect” in poly(styrene maleic anhydride)/TiO2 nanocomposites. Journal of Materials Science Letters, 1999, 18(24): 2009–2012
CrossRef Google scholar
[21]
Lei Y, Yang S, Wu M, Wilde G. Surface patterning using templates: Concept, properties and device applications. Chemical Society Reviews, 2011, 40(3): 1247–1258
CrossRef Google scholar
[22]
Zhao H, Zhou M, Wen L, Lei Y. Template-directed construction of nanostructure arrays for highly-efficient energy storage and conversion. Nano Energy, 2015, 13: 790–813
CrossRef Google scholar
[23]
Al-Haddad A, Zhan Z, Wang C, Tarish S, Vellacheria R, Lei Y. Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning. ACS Nano, 2015, 9(8): 8584–8591
CrossRef Google scholar
[24]
Wang Z, Cao D, Xu R, Qu S, Wang Z, Lei Y. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy, 2016, 19: 328–362
CrossRef Google scholar
[25]
Fu Q, Zhan Z, Dou J, Zheng X, Xu R, Wu M, Lei Y. Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique. ACS Applied Materials & Interfaces, 2015, 7(24): 13322–13328
CrossRef Google scholar
[26]
Zhao S, Roberge H, Yelon A, Veres T. New application of AAO template: A mold for nanoring and nanocone arrays. Journal of the American Chemical Society, 2006, 128(38): 12352–12353
CrossRef Google scholar
[27]
Liang J, Chik H, Yin A, Xu J. Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template. Journal of Applied Physics, 2002, 91(4): 2544–2546
CrossRef Google scholar
[28]
Zhao H, Wang C, Vellacheri R, Zhou M, Xu Y, Fu Q, Wu M, Grote F, Lei Y. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. Advanced Materials, 2014, 26(45): 7654–7659
CrossRef Google scholar
[29]
Wen L, Xu R, Mi Y, Lei Y. Multiple nanostructures based on anodized aluminium oxide templates. Nature Nanotechnology, 2017, 12(3): 244–250
CrossRef Google scholar
[30]
Lei Y. Functional nanostructuring for efficient energy conversion and storage. Advanced Energy Materials, 2016, 6(23): 1600461
CrossRef Google scholar
[31]
Tan F, Wang Z, Qu S, Cao D, Liu K, Jiang Q, Yang Y, Pang S, Zhang W, Lei Y, A CdSe thin film: A versatile buffer layer for improving the performance of TiO2 nanorod array: PbS quantum dot solar cells. Nanoscale, 2016, 8(19): 10198–10204
CrossRef Google scholar
[32]
Liu L, Hou H, Wang L, Xu R, Lei Y, Shen S, Yang D, Yang W. A transparent CdS@TiO2 nanotextile photoanode with boosted photoelectrocatalytic efficiency and stability. Nanoscale, 2017, 9(40): 15650–15657
CrossRef Google scholar
[33]
Al-Haddad A, Wang Z, Zhou M, Tarish S, Vellacheri R, Lei Y. Constructing well-ordered CdTe/TiO2 Core/Shell nanowire arrays for solar energy conversion. Small, 2016, 12(40): 5538–5542
CrossRef Google scholar
[34]
Chi D, Lu S, Xu R, Liu K, Cao D, Wen L, Mi Y, Wang Z, Lei Y, Qu S, Fully understanding the positive roles of plasmonic nanoparticles in ameliorating the efficiency of organic solar cells. Nanoscale, 2015, 7(37): 15251–15257
CrossRef Google scholar
[35]
Mi Y, Wen L, Xu R, Wang Z, Cao D, Fang Y, Lei Y. Constructing a AZO/TiO2 core/shell nanocone array with uniformly dispersed Au NPs for enhancing photoelectrochemical water splitting. Advanced Energy Materials, 2016, 6(1): 1501496
CrossRef Google scholar
[36]
Xu R, Wen L, Wang Z, Zhao H, Xu S, Mi Y, Xu Y, Sommerfeld M, Fang Y, Lei Y. Three-dimensional plasmonic nanostructure design for boosting photoelectrochemical activity. ACS Nano, 2017, 11(7): 7382–7389
CrossRef Google scholar
[37]
Zhan Z, Lei Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano, 2014, 8(4): 3862–3868
CrossRef Google scholar
[38]
Zhan Z, Xu R, Mi Y, Zhao H, Lei Y. Highly controllable surface plasmon resonance property by heights of ordered nanoparticle arrays fabricated via a nonlithographic route. ACS Nano, 2015, 9(4): 583–4590
CrossRef Google scholar
[39]
Wang Z, Cao D, Wen L, Xu R, Obergfell M, Mi Y, Zhan Z, Nasori N, Demsar J, Lei Y. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications. Nature Communications, 2016, 7: 10348
CrossRef Google scholar
[40]
Liu L, Zhao H, Wang Y, Fang Y, Xie J, Lei Y. Evaluating the role of nanostructured current collectors in energy storage capability of supercapacitor electrodes with thick electroactive materials layer. Advanced Functional Materials, 2018, 28(6): 1705107
CrossRef Google scholar
[41]
Xu Y, Zhou M, Zhang C, Wang C, Liang L, Fang Y, Wu M, Cheng L, Le Y. Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy, 2017, 38: 304–312
CrossRef Google scholar
[42]
Wang C, Fang Y, Xu Y, Liang L, Zhou M, Zhao H, Lei Y. Manipulation of disodium rhodizonate: Factors for fast-charge and fast-discharge sodium-ion batteries with long-term cyclability. Advanced Functional Materials, 2016, 26(11): 1777–1786
CrossRef Google scholar
[43]
Zhou M, Xu Y, Wang C, Li Q, Xiang J, Liang L, Wu M, Zhao H, Lei Y. Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31: 514–524
CrossRef Google scholar
[44]
Liang L, Xu Y, Wen L, Li Y, Zhou M, Wang C, Zhao H, Kaiser U, Lei Y. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Research, 2017, 10(9): 3189–3201
CrossRef Google scholar
[45]
Liang L, Xu Y, Li Y, Dong H, Zhou M, Zhao H, Kaiser U, Lei Y. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(4): 1749–1755
CrossRef Google scholar
[46]
Liang L, Xu Y, Wang C, Wen L, Fang Y, Mi Y, Zhou M, Zhao H, Lei Y. Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy & Environmental Science, 2015, 8(10): 2954–2962
CrossRef Google scholar
[47]
Xu Y, Zhou M, Wen L, Wang C, Zhao H, Mi Y, Liang L, Fu Q, Wu M, Lei Y. Highly ordered three-dimensional Ni-TiO2 nanoarrays as sodium ion battery anodes. Chemistry of Materials, 2015, 27(12): 4274–4280
CrossRef Google scholar
[48]
Vellacheri R, Al-Haddad A, Zhao H, Wang W, Wang C, Lei Y. High performance supercapacitor for efficient energy storage under extreme environmental temperatures. Nano Energy, 2014, 8: 231–237
CrossRef Google scholar
[49]
Grote F, Zhao H, Lei Y. Self-supported carbon coated TiN nanotube arrays: Innovative carbon coating leads to an improved cycling ability for supercapacitor applications. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(7): 3465–3470
CrossRef Google scholar
[50]
Grote F, Lei Y. A complete three-dimensionally nanostructured asymmetric supercapacitor with high operating voltage window based on PPy and MnO2. Nano Energy, 2014, 10: 63–70
CrossRef Google scholar
[51]
Grote F, Kühnel R S, Balducci A, Lei Y. Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors. Applied Physics Letters, 2014, 104(5): 053904
CrossRef Google scholar
[52]
Grote F, Wen L, Lei Y. Nano-engineering of three-dimensional core/shell nanotube arrays for high performance supercapacitors. Journal of Power Sources, 2014, 256: 37–42
CrossRef Google scholar
[53]
Vellacheri R, Zhao H, Mühlstädt M, Al-Haddad A, Jandt K D, Lei Y. Rationally engineered electrodes for a high-performance solid-state cable-type supercapacitor. Advanced Functional Materials, 2017, 27(18): 1606696
CrossRef Google scholar
[54]
Vellacheri R, Zhao H, Mühlstädt M, Ming J, Al-Haddad A, Wu M, Jandt K D, Lei Y. All-solid-state cable-type supercapacitors with ultrahigh rate capability. Advanced Materials Technologies, 2016, 1(1): 1600012
CrossRef Google scholar
[55]
Nitti A, Signorile M, Boiocchi M, Bianchi G, Po R, Pasini D. Conjugated thiophene-fused isatin dyes through intramolecular direct arylation. Journal of Organic Chemistry, 2016, 81(22): 11035–11042
CrossRef Google scholar
[56]
Nitti A, Bianchi G, Po R, Swager T M, Pasini D. Domino direct arylation and cross-aldol for rapid construction of extended polycyclic p-scaffolds. Journal of the American Chemical Society, 2017, 139(26): 8788–8791
CrossRef Google scholar
[57]
Nitti A, Po R, Bianchi G, Pasini D. Direct arylation strategies in the synthesis of p-extended monomers for organic polymeric solar cells. Molecules (Basel, Switzerland), 2016, 22(1): 21
CrossRef Google scholar
[58]
Xu Y, Zhou M, Lei Y. Organic materials for rechargeable sodium-ion batteries. Materials Today, 2018, 21(1): 60–78
CrossRef Google scholar
[59]
Wang C, Jiang C, Xu Y, Liang L, Zhou M, Jiang J, Singh S, Zhao H, Schober A, Lei Y. A selectively permeable membrane for enhancing cyclability of organic sodium-ion batteries. Advanced Materials, 2016, 28(41): 9182–9187
CrossRef Google scholar
[60]
Wang C, Xu Y, Fang Y, Zhou M, Liang L, Singh S, Zhao H, Schober A, Lei Y. Extended p-conjugated system for fast-charge and-discharge sodium-ion batteries. Journal of the American Chemical Society, 2015, 137(8): 3124–3130
CrossRef Google scholar

Acknowledgements

The authors acknowledge funding from the European Research Council (ThreeDsurface: 240144), European Research Council (HiNaPc: 737616), BMBF (ZIK-3DNanoDevice: 03Z1MN11), BMBF (Meta-ZIK-BioLithoMorphie: 03Z1M512), and German Research Foundation (DFG: LE 2249_4-1) for the financial support to this work.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(958 KB)

Accesses

Citations

Detail

Sections
Recommended

/