Frontiers of Chemical Science and Engineering >
Detection of CO2 and O2 by iron loaded LTL zeolite films
Received date: 04 Aug 2017
Accepted date: 24 Oct 2017
Published date: 26 Feb 2018
Copyright
Detection of oxygen and carbon dioxide is important in the field of chemical and biosensors for atmosphere and biosystem monitoring and fermentation processes. The present study reports on the preparation of zeolite films doped with iron nanoparticles for detection of CO2 and O2 in gas phase. Pure nanosized LTL type zeolite with monomodal particle size distribution loaded with iron (Fe-LTL) was prepared under hydrothermal condition from colloidal precursor suspensions. The zeolite was loaded with iron to different levels by ion exchange. The Fe-LTL suspensions were used for preparation of thin films on silicon wafers via spin coating method. The reduction of the iron in the zeolite films was carried out under H2 flow (50% H2 in Ar) at 300 °C. The presence of iron nanoparticles is proved by in situ ultra-violet-visible spectroscopy. The properties of the films including surface roughness, thickness, porosity, and mechanical stability were studied. In addition, the loading and distribution of iron in the zeolite films were investigated. The Fe-LTL zeolite films were used to detect O2 and CO2 in a concentration dependent mode, followed by IR spectroscopy. The changes in the IR bands at 855 and 642 cm−1 (Fe–O–H and Fe–O bending vibrations) and at 2363 and 2333 cm−1 (CO2 asymmetric stretching) corresponding to the presence of O2 and CO2, respectively, were evaluated. The response to O2 and CO2 was instant, which was attributed to great accessibility of the iron in the nanosized zeolite crystals. The saturation of the Fe-LTL films with CO2 and O2 at each concentration was reached within less than a minute. The Fe-LTL films detected both oxygen and carbon dioxide in contrast, to the pure LTL zeolite film.
Key words: zeolite films; detection of CO2 and O2; adsorption
Veselina Georgieva , Richard Retoux , Valerie Ruaux , Valentin Valtchev , Svetlana Mintova . Detection of CO2 and O2 by iron loaded LTL zeolite films[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(1) : 94 -102 . DOI: 10.1007/s11705-017-1692-5
1 |
Diamond D. Principles of chemical and biological sensors. Michigan: Wiley, 1998, 220–290
|
2 |
Bein T. Synthesis and applications of molecular sieve layers and membranes. Chemistry of Materials, 1996, 8(8): 1636–1653
|
3 |
Mintova S, Mo S, Bein T. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chemistry of Materials, 2001, 13(3): 901–905
|
4 |
Yang P, Lau C, Liang J Y, Lu J Z, Liu X. Zeolite-based cataluminescence sensor for the selective detection of acetaldehyde. Luminescence, 2007, 22(5): 473–479
|
5 |
Mintova S, Jaber M, Valtchev V. Nanosized microporous crystals: Emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233
|
6 |
Bein T, Mintova S. Zeolites and ordered mesoporous materials: Progress and prospects. Studies in Surface Science and Catalysis, 2005, 157: 263–288
|
7 |
Mintova S, Bein T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials, 2001, 13(24): 1880–1883
|
8 |
Leite E, Babeva T, Ng E P, Toal V, Mintova S, Naydenova I. Optical properties of photopolymer layers doped with aluminophosphate nanocrystals. Journal of Physical Chemistry C, 2010, 114(39): 16767–16775
|
9 |
Valtchev V, Tosheva L. Porous nanosized particles: Preparation, properties, and applications. Chemical Reviews, 2013, 113(8): 6734–6760
|
10 |
Yasuda K E, Visser J E, Bein T. Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing. Microporous and Mesoporous Materials, 2009, 119(1-3): 356–359
|
11 |
Xu X, Wang J, Long Y. Zeolite-based materials for gas sensors. Sensors (Basel), 2006, 6(12): 1751–1764
|
12 |
Lakiss L, Kecht J, De Waele V, Mintova S. Copper-containing nanoporous films. Superlattices and Microstructures, 2008, 44(4-5): 617–625
|
13 |
Thomas S, Bazin P, Lakiss L, De Waele V, Mintova S. In situ infrared molecular detection using palladium-containing zeolite films. Langmuir, 2011, 27(23): 14689–14695
|
14 |
Huang H, Zhou J, Chen S, Zeng L, Huang Y. A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sensors and Actuators. B, Chemical, 2004, 101(3): 316–321
|
15 |
Dubbe A. The effect of platinum clusters in the zeolite micropores of a zeolite-based potentiometric hydrocarbon gas sensor. Sensors and Actuators. B, Chemical, 2009, 137(1): 205–208
|
16 |
Wales D J, Grand J, Ting V P, Burke R D, Edler K J, Bowen C R, Mintova S, Burrows A D. Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 2015, 44(13): 4290–4321
|
17 |
Fine G F, Cavanagh L M, Afonja A, Binions R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel), 2010, 10(6): 5469–5502
|
18 |
Mohan N, Cindrella L. Mater. Direct synthesis of Fe-ZSM-5 zeolite and its prospects as efficient electrode material in methanol fuel cell. Materials Science in Semiconductor Processing, 2015, 40: 361–368
|
19 |
Yue Y, Liu H, Yuan P, Yu C, Bao X. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports, 2015, 5(9270): 1–10
|
20 |
Luo L, Dai C, Zhang A, Wang J, Liu M, Song C, Guo X. Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Advances, 2015, 5(37): 29509–29512
|
21 |
Bouazizi N, Ouargli R, Nousir S, Slama R B, Azzouz A. Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. Journal of Physics and Chemistry of Solids, 2015, 77: 172–177
|
22 |
Georgieva V, Anfray C, Retoux R, Valtchev V, Valable S, Mintova S. Iron loaded EMT nanosized zeolite with high affinity towards CO2 and NO. Microporous and Mesoporous Materials, 2016, 232: 256–263
|
23 |
Suri K, Annapoorni S, Sarkar A K, Tandon R P. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sensors and Actuators. B, Chemical, 2002, 81(2-3): 277–282
|
24 |
Mcdonagh C M, Shields M, Mcevoy K, Maccraith B D, Gouin J F. Optical sol-gel-based dissolved oxygen sensor: Progress towards a commercial instrument. Journal of Sol-Gel Science and Technology, 1998, 13(1-3): 207–211
|
25 |
Ishiji T, Chipman D W, Takahashi T, Takahashi K. Amperometric sensor for monitoring of dissolved carbon dioxide in seawater. Sensors and Actuators. B, Chemical, 2001, 76(1-3): 265–269
|
26 |
Guéguen C, Tortell P D. High-resolution measurement of southern ocean CO2 and O2/Ar by membrane inlet mass spectrometry. Marine Chemistry, 2008, 108(3-4): 184–194
|
27 |
Higgins C, Wencel D, Burke C S, MacCraith B D, McDonagh C. Novel hybrid optical sensor materials for in-breath O(2) analysis. Analyst (London), 2008, 133(2): 241–247
|
28 |
Hoelper B M, Alessandri B, Heimann A, Behr R, Kempski O. Brain oxygen monitoring: In-vitro accuracy, long-term drift and response-time of Licox- and Neurotrend sensors. Acta Neurochirurgica, 2005, 147(7): 767–774
|
29 |
Baldini F, Falai A, De Gaudio R, Landi D, Lueger A, Mencaglia A, Scherr D, Trettnak W. Continuous monitoring of gastric carbon dioxide with optical fibres. Sensors and Actuators. B, Chemical, 2003, 90(1-3): 132–138
|
30 |
Čajlaković M, Bizzarri A, Ribitsch V. Luminescence lifetime-based carbon dioxide optical sensor for clinical applications. Analytica Chimica Acta, 2006, 573-574: 57–64
|
31 |
Wolfbeis O S, Klimant I, Werner T, Huber C, Kosch U, Krause C, Neurauter G, Dürkop A. Set of luminescence decay time based chemical sensors for clinical applications. Sensors and Actuators. B, Chemical, 1998, 51(1-3): 17–24
|
32 |
Mills A. Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 2005, 34(12): 1003–1011
|
33 |
Chaix E, Guillaume C, Guillard V. Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: A review of past and current knowledge. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 261–286
|
34 |
Ge X, Hanson M, Shen H, Kostov Y, Brorson K, Frey D D, Moreira A R, Rao G. Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. Journal of Biotechnology, 2006, 122(3): 293–306
|
35 |
Ge X, Kostov Y, Rao G. Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnology and Bioengineering, 2005, 89(3): 329–334
|
36 |
Mulrooney J, Clifford J, Fitzpatrick C, Lewis E. Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sensors and Actuators. A, Physical, 2007, 136(1): 104–110
|
37 |
Litzelman S J, Rothschild A, Tuller H L. The electrical properties and stability of SrTi0.65Fe0.35O3-δ thin films for automotive oxygen sensor applications. Sensors and Actuators. B, Chemical, 2005, 108(1-2): 231–237
|
38 |
Souici A, Wong K L, De Waele V, Marignier J L, Metzger T H, Keghouche N, Mintova S, Mostafavi M. Capturing the formation of sub-nanometer sized CdS clusters in LTL zeolite. Journal of Physical Chemistry C, 2014, 118(12): 6324–6334
|
39 |
Hölzl M, Mintova S, Bein T. Colloidal LTL zeolite synthesized under microwave irradiation. Studies in Surface Science and Catalysis, 2005, 158(5): 11–18
|
40 |
Lakiss L, Yordanov I, Majano G, Metzger T, Mintova S. Effect of stabilizing binder and dispersion media on spin-on zeolite thin films. Thin Solid Films, 2010, 518(8): 2241–2246
|
41 |
Lowell S. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Netherlands: Springer, 2004, 58–81
|
42 |
Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619
|
43 |
Das D, Ravichandran G, Chakrabarty D K, Piramanayagam S N, Shringi S N. Selective synthesis of light alkenes from carbon monoxide and hydrogen on silicalite supported iron-manganese catalysts. Applied Catalysis A, General, 1993, 107(1): 73–81
|
44 |
Guo L, Huang Q, Li X, Yang S. Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 2001, 3(9): 1661–1665
|
45 |
Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Journal of Catalysis, 1996, 158(2): 486–501
|
46 |
Pérez-Ramírez J, Groen J C, Brückner A, Kumar M S, Bentrup U, Debbagh M N, Villaescusa L A. Evolution of isomorphously substituted iron zeolites during activation: Comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005, 232(2): 318–334
|
47 |
Mintova S, Bein T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials, 2001, 13(24): 1880–1883
|
48 |
Mintova S, Valtchev V, Konstantinov L. Adhesivity of molecular sieve films on metal substrates. Zeolites, 1996, 17(5-6): 462–465
|
49 |
Andrews L, Chertihin G V, Citra A, Neurock M. Reactions of laser-ablated iron atoms with N2O, NO, and O2 in condensing nitrogen. Infrared spectra and density functional calculations of ternary iron nitride oxide molecules. Journal of Physical Chemistry, 1996, 100(27): 11235–11241
|
50 |
Reiff W M, Baker W A, Erickson N E. Binuclear, oxygen-bridged complexes of iron(III). New iron (III)-2,2′,2"-terpyridine complexes. Journal of the American Chemical Society, 1968, 90(18): 4794–4800
|
51 |
Dalla Betta R A, Garten R L, Boudart M. Infrared examination of the reversible oxidation of ferrous ions in Y zeolite. Journal of Catalysis, 1976, 41(1): 40–45
|
/
〈 | 〉 |