Detection of CO2 and O2 by iron loaded LTL zeolite films

Veselina Georgieva, Richard Retoux, Valerie Ruaux, Valentin Valtchev, Svetlana Mintova

PDF(475 KB)
PDF(475 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 94-102. DOI: 10.1007/s11705-017-1692-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Detection of CO2 and O2 by iron loaded LTL zeolite films

Author information +
History +

Abstract

Detection of oxygen and carbon dioxide is important in the field of chemical and biosensors for atmosphere and biosystem monitoring and fermentation processes. The present study reports on the preparation of zeolite films doped with iron nanoparticles for detection of CO2 and O2 in gas phase. Pure nanosized LTL type zeolite with monomodal particle size distribution loaded with iron (Fe-LTL) was prepared under hydrothermal condition from colloidal precursor suspensions. The zeolite was loaded with iron to different levels by ion exchange. The Fe-LTL suspensions were used for preparation of thin films on silicon wafers via spin coating method. The reduction of the iron in the zeolite films was carried out under H2 flow (50% H2 in Ar) at 300 °C. The presence of iron nanoparticles is proved by in situ ultra-violet-visible spectroscopy. The properties of the films including surface roughness, thickness, porosity, and mechanical stability were studied. In addition, the loading and distribution of iron in the zeolite films were investigated. The Fe-LTL zeolite films were used to detect O2 and CO2 in a concentration dependent mode, followed by IR spectroscopy. The changes in the IR bands at 855 and 642 cm1 (Fe–O–H and Fe–O bending vibrations) and at 2363 and 2333 cm1 (CO2 asymmetric stretching) corresponding to the presence of O2 and CO2, respectively, were evaluated. The response to O2 and CO2 was instant, which was attributed to great accessibility of the iron in the nanosized zeolite crystals. The saturation of the Fe-LTL films with CO2 and O2 at each concentration was reached within less than a minute. The Fe-LTL films detected both oxygen and carbon dioxide in contrast, to the pure LTL zeolite film.

Graphical abstract

Keywords

zeolite films / detection of CO2 and O2 / adsorption

Cite this article

Download citation ▾
Veselina Georgieva, Richard Retoux, Valerie Ruaux, Valentin Valtchev, Svetlana Mintova. Detection of CO2 and O2 by iron loaded LTL zeolite films. Front. Chem. Sci. Eng., 2018, 12(1): 94‒102 https://doi.org/10.1007/s11705-017-1692-5

References

[1]
Diamond D. Principles of chemical and biological sensors. Michigan: Wiley, 1998, 220–290
[2]
Bein T. Synthesis and applications of molecular sieve layers and membranes. Chemistry of Materials, 1996, 8(8): 1636–1653
CrossRef Google scholar
[3]
Mintova S, Mo  S, Bein T. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chemistry of Materials, 2001, 13(3): 901–905
CrossRef Google scholar
[4]
Yang P, Lau  C, Liang J Y,  Lu J Z,  Liu X. Zeolite-based cataluminescence sensor for the selective detection of acetaldehyde. Luminescence, 2007, 22(5): 473–479
CrossRef Google scholar
[5]
Mintova S, Jaber  M, Valtchev V. Nanosized microporous crystals: Emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233
CrossRef Google scholar
[6]
Bein T, Mintova  S. Zeolites and ordered mesoporous materials: Progress and prospects. Studies in Surface Science and Catalysis, 2005, 157: 263–288
CrossRef Google scholar
[7]
Mintova S, Bein  T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials, 2001, 13(24): 1880–1883
CrossRef Google scholar
[8]
Leite E, Babeva  T, Ng E P,  Toal V, Mintova  S, Naydenova I. Optical properties of photopolymer layers doped with aluminophosphate nanocrystals. Journal of Physical Chemistry C, 2010, 114(39): 16767–16775
CrossRef Google scholar
[9]
Valtchev V, Tosheva  L. Porous nanosized particles: Preparation, properties, and applications. Chemical Reviews, 2013, 113(8): 6734–6760
CrossRef Google scholar
[10]
Yasuda K E, Visser  J E, Bein  T. Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing. Microporous and Mesoporous Materials, 2009, 119(1-3): 356–359
CrossRef Google scholar
[11]
Xu X, Wang  J, Long Y. Zeolite-based materials for gas sensors. Sensors (Basel), 2006, 6(12): 1751–1764
CrossRef Google scholar
[12]
Lakiss L, Kecht  J, De Waele V,  Mintova S. Copper-containing nanoporous films. Superlattices and Microstructures, 2008, 44(4-5): 617–625
CrossRef Google scholar
[13]
Thomas S, Bazin  P, Lakiss L,  De Waele V,  Mintova S. In situ infrared molecular detection using palladium-containing zeolite films. Langmuir, 2011, 27(23): 14689–14695
CrossRef Google scholar
[14]
Huang H, Zhou  J, Chen S,  Zeng L, Huang  Y. A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sensors and Actuators. B, Chemical, 2004, 101(3): 316–321
CrossRef Google scholar
[15]
Dubbe A. The effect of platinum clusters in the zeolite micropores of a zeolite-based potentiometric hydrocarbon gas sensor. Sensors and Actuators. B, Chemical, 2009, 137(1): 205–208
CrossRef Google scholar
[16]
Wales D J, Grand  J, Ting V P,  Burke R D,  Edler K J,  Bowen C R,  Mintova S,  Burrows A D. Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 2015, 44(13): 4290–4321
CrossRef Google scholar
[17]
Fine G F, Cavanagh  L M, Afonja  A, Binions R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel), 2010, 10(6): 5469–5502
CrossRef Google scholar
[18]
Mohan N, Cindrella  L. Mater. Direct synthesis of Fe-ZSM-5 zeolite and its prospects as efficient electrode material in methanol fuel cell. Materials Science in Semiconductor Processing, 2015, 40: 361–368
CrossRef Google scholar
[19]
Yue Y, Liu  H, Yuan P,  Yu C, Bao  X. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports, 2015, 5(9270): 1–10
[20]
Luo L, Dai  C, Zhang A,  Wang J, Liu  M, Song C,  Guo X. Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Advances, 2015, 5(37): 29509–29512
CrossRef Google scholar
[21]
Bouazizi N, Ouargli  R, Nousir S,  Slama R B,  Azzouz A. Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. Journal of Physics and Chemistry of Solids, 2015, 77: 172–177
CrossRef Google scholar
[22]
Georgieva V, Anfray  C, Retoux R,  Valtchev V,  Valable S,  Mintova S. Iron loaded EMT nanosized zeolite with high affinity towards CO2 and NO. Microporous and Mesoporous Materials, 2016, 232: 256–263
CrossRef Google scholar
[23]
Suri K, Annapoorni  S, Sarkar A K,  Tandon R P. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sensors and Actuators. B, Chemical, 2002, 81(2-3): 277–282
CrossRef Google scholar
[24]
Mcdonagh C M, Shields  M, Mcevoy K,  Maccraith B D,  Gouin J F. Optical sol-gel-based dissolved oxygen sensor: Progress towards a commercial instrument. Journal of Sol-Gel Science and Technology, 1998, 13(1-3): 207–211
CrossRef Google scholar
[25]
Ishiji T, Chipman  D W, Takahashi  T, Takahashi K. Amperometric sensor for monitoring of dissolved carbon dioxide in seawater. Sensors and Actuators. B, Chemical, 2001, 76(1-3): 265–269
CrossRef Google scholar
[26]
Guéguen C, Tortell  P D. High-resolution measurement of southern ocean CO2 and O2/Ar by membrane inlet mass spectrometry. Marine Chemistry, 2008, 108(3-4): 184–194
CrossRef Google scholar
[27]
Higgins C, Wencel  D, Burke C S,  MacCraith B D,  McDonagh C. Novel hybrid optical sensor materials for in-breath O(2) analysis. Analyst (London), 2008, 133(2): 241–247
CrossRef Google scholar
[28]
Hoelper B M, Alessandri  B, Heimann A,  Behr R, Kempski  O. Brain oxygen monitoring: In-vitro accuracy, long-term drift and response-time of Licox- and Neurotrend sensors. Acta Neurochirurgica, 2005, 147(7): 767–774
CrossRef Google scholar
[29]
Baldini F, Falai  A, De Gaudio R,  Landi D,  Lueger A,  Mencaglia A,  Scherr D,  Trettnak W. Continuous monitoring of gastric carbon dioxide with optical fibres. Sensors and Actuators. B, Chemical, 2003, 90(1-3): 132–138
CrossRef Google scholar
[30]
Čajlaković M,  Bizzarri A,  Ribitsch V. Luminescence lifetime-based carbon dioxide optical sensor for clinical applications. Analytica Chimica Acta, 2006, 573-574: 57–64
CrossRef Google scholar
[31]
Wolfbeis O S, Klimant  I, Werner T,  Huber C,  Kosch U,  Krause C,  Neurauter G,  Dürkop A. Set of luminescence decay time based chemical sensors for clinical applications. Sensors and Actuators. B, Chemical, 1998, 51(1-3): 17–24
CrossRef Google scholar
[32]
Mills A. Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 2005, 34(12): 1003–1011
CrossRef Google scholar
[33]
Chaix E, Guillaume  C, Guillard V. Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: A review of past and current knowledge. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 261–286
CrossRef Google scholar
[34]
Ge X, Hanson  M, Shen H,  Kostov Y,  Brorson K,  Frey D D,  Moreira A R,  Rao G. Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. Journal of Biotechnology, 2006, 122(3): 293–306
CrossRef Google scholar
[35]
Ge X, Kostov  Y, Rao G. Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnology and Bioengineering, 2005, 89(3): 329–334
CrossRef Google scholar
[36]
Mulrooney J, Clifford  J, Fitzpatrick C,  Lewis E. Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sensors and Actuators. A, Physical, 2007, 136(1): 104–110
CrossRef Google scholar
[37]
Litzelman S J,  Rothschild A,  Tuller H L. The electrical properties and stability of SrTi0.65Fe0.35O3-δ thin films for automotive oxygen sensor applications. Sensors and Actuators. B, Chemical, 2005, 108(1-2): 231–237
CrossRef Google scholar
[38]
Souici A, Wong  K L, De Waele  V, Marignier J L,  Metzger T H,  Keghouche N,  Mintova S,  Mostafavi M. Capturing the formation of sub-nanometer sized CdS clusters in LTL zeolite. Journal of Physical Chemistry C, 2014, 118(12): 6324–6334
CrossRef Google scholar
[39]
Hölzl M, Mintova  S, Bein T. Colloidal LTL zeolite synthesized under microwave irradiation. Studies in Surface Science and Catalysis, 2005, 158(5): 11–18
CrossRef Google scholar
[40]
Lakiss L, Yordanov  I, Majano G,  Metzger T,  Mintova S. Effect of stabilizing binder and dispersion media on spin-on zeolite thin films. Thin Solid Films, 2010, 518(8): 2241–2246
CrossRef Google scholar
[41]
Lowell S. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density.  Netherlands: Springer, 2004, 58–81
[42]
Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619
CrossRef Google scholar
[43]
Das D, Ravichandran  G, Chakrabarty D K,  Piramanayagam S N,  Shringi S N. Selective synthesis of light alkenes from carbon monoxide and hydrogen on silicalite supported iron-manganese catalysts. Applied Catalysis A, General, 1993, 107(1): 73–81
CrossRef Google scholar
[44]
Guo L, Huang  Q, Li X,  Yang S. Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 2001, 3(9): 1661–1665
CrossRef Google scholar
[45]
Bordiga S, Buzzoni  R, Geobaldo F,  Lamberti C,  Giamello E,  Zecchina A,  Leofanti G,  Petrini G,  Tozzola G,  Vlaic G. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Journal of Catalysis, 1996, 158(2): 486–501
CrossRef Google scholar
[46]
Pérez-Ramírez J,  Groen J C,  Brückner A,  Kumar M S,  Bentrup U,  Debbagh M N,  Villaescusa L A. Evolution of isomorphously substituted iron zeolites during activation: Comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005, 232(2): 318–334
CrossRef Google scholar
[47]
Mintova S, Bein  T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials, 2001, 13(24): 1880–1883
CrossRef Google scholar
[48]
Mintova S, Valtchev  V, Konstantinov L. Adhesivity of molecular sieve films on metal substrates. Zeolites, 1996, 17(5-6): 462–465
CrossRef Google scholar
[49]
Andrews L, Chertihin  G V, Citra  A, Neurock M. Reactions of laser-ablated iron atoms with N2O, NO, and O2 in condensing nitrogen. Infrared spectra and density functional calculations of ternary iron nitride oxide molecules. Journal of Physical Chemistry, 1996, 100(27): 11235–11241
CrossRef Google scholar
[50]
Reiff W M, Baker  W A, Erickson  N E. Binuclear, oxygen-bridged complexes of iron(III). New iron (III)-2,2′,2"-terpyridine complexes. Journal of the American Chemical Society, 1968, 90(18): 4794–4800
CrossRef Google scholar
[51]
Dalla Betta R A,  Garten R L,  Boudart M. Infrared examination of the reversible oxidation of ferrous ions in Y zeolite. Journal of Catalysis, 1976, 41(1): 40–45
CrossRef Google scholar

Acknowledgements

The financial support provided by TARGED ANR and Normandy C2–MTM Project is acknowledged.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(475 KB)

Accesses

Citations

Detail

Sections
Recommended

/