Detection of CO2 and O2 by iron loaded LTL zeolite films

Veselina Georgieva , Richard Retoux , Valerie Ruaux , Valentin Valtchev , Svetlana Mintova

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 94 -102.

PDF (475KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 94 -102. DOI: 10.1007/s11705-017-1692-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Detection of CO2 and O2 by iron loaded LTL zeolite films

Author information +
History +
PDF (475KB)

Abstract

Detection of oxygen and carbon dioxide is important in the field of chemical and biosensors for atmosphere and biosystem monitoring and fermentation processes. The present study reports on the preparation of zeolite films doped with iron nanoparticles for detection of CO2 and O2 in gas phase. Pure nanosized LTL type zeolite with monomodal particle size distribution loaded with iron (Fe-LTL) was prepared under hydrothermal condition from colloidal precursor suspensions. The zeolite was loaded with iron to different levels by ion exchange. The Fe-LTL suspensions were used for preparation of thin films on silicon wafers via spin coating method. The reduction of the iron in the zeolite films was carried out under H2 flow (50% H2 in Ar) at 300 °C. The presence of iron nanoparticles is proved by in situ ultra-violet-visible spectroscopy. The properties of the films including surface roughness, thickness, porosity, and mechanical stability were studied. In addition, the loading and distribution of iron in the zeolite films were investigated. The Fe-LTL zeolite films were used to detect O2 and CO2 in a concentration dependent mode, followed by IR spectroscopy. The changes in the IR bands at 855 and 642 cm1 (Fe–O–H and Fe–O bending vibrations) and at 2363 and 2333 cm1 (CO2 asymmetric stretching) corresponding to the presence of O2 and CO2, respectively, were evaluated. The response to O2 and CO2 was instant, which was attributed to great accessibility of the iron in the nanosized zeolite crystals. The saturation of the Fe-LTL films with CO2 and O2 at each concentration was reached within less than a minute. The Fe-LTL films detected both oxygen and carbon dioxide in contrast, to the pure LTL zeolite film.

Graphical abstract

Keywords

zeolite films / detection of CO2 and O2 / adsorption

Cite this article

Download citation ▾
Veselina Georgieva, Richard Retoux, Valerie Ruaux, Valentin Valtchev, Svetlana Mintova. Detection of CO2 and O2 by iron loaded LTL zeolite films. Front. Chem. Sci. Eng., 2018, 12(1): 94-102 DOI:10.1007/s11705-017-1692-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Diamond D. Principles of chemical and biological sensors. Michigan: Wiley1998, 220–290

[2]

Bein T. Synthesis and applications of molecular sieve layers and membranes. Chemistry of Materials19968(8): 1636–1653

[3]

Mintova SMo  SBein T. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chemistry of Materials200113(3): 901–905

[4]

Yang PLau  CLiang J Y Lu J Z Liu X. Zeolite-based cataluminescence sensor for the selective detection of acetaldehyde. Luminescence200722(5): 473–479

[5]

Mintova SJaber  MValtchev V. Nanosized microporous crystals: Emerging applications. Chemical Society Reviews201544(20): 7207–7233

[6]

Bein TMintova  S. Zeolites and ordered mesoporous materials: Progress and prospects. Studies in Surface Science and Catalysis2005157: 263–288

[7]

Mintova SBein  T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials200113(24): 1880–1883

[8]

Leite EBabeva  TNg E P Toal VMintova  SNaydenova I. Optical properties of photopolymer layers doped with aluminophosphate nanocrystals. Journal of Physical Chemistry C2010114(39): 16767–16775

[9]

Valtchev VTosheva  L. Porous nanosized particles: Preparation, properties, and applications. Chemical Reviews2013113(8): 6734–6760

[10]

Yasuda K EVisser  J EBein  T. Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing. Microporous and Mesoporous Materials2009119(1-3): 356–359

[11]

Xu XWang  JLong Y. Zeolite-based materials for gas sensors. Sensors (Basel)20066(12): 1751–1764

[12]

Lakiss LKecht  JDe Waele V Mintova S. Copper-containing nanoporous films. Superlattices and Microstructures200844(4-5): 617–625

[13]

Thomas SBazin  PLakiss L De Waele V Mintova SIn situ infrared molecular detection using palladium-containing zeolite films. Langmuir201127(23): 14689–14695

[14]

Huang HZhou  JChen S Zeng LHuang  Y. A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sensors and Actuators. B, Chemical2004101(3): 316–321

[15]

Dubbe A. The effect of platinum clusters in the zeolite micropores of a zeolite-based potentiometric hydrocarbon gas sensor. Sensors and Actuators. B, Chemical2009137(1): 205–208

[16]

Wales D JGrand  JTing V P Burke R D Edler K J Bowen C R Mintova S Burrows A D. Gas sensing using porous materials for automotive applications. Chemical Society Reviews201544(13): 4290–4321

[17]

Fine G FCavanagh  L MAfonja  ABinions R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors (Basel)201010(6): 5469–5502

[18]

Mohan NCindrella  L. Mater. Direct synthesis of Fe-ZSM-5 zeolite and its prospects as efficient electrode material in methanol fuel cell. Materials Science in Semiconductor Processing201540: 361–368

[19]

Yue YLiu  HYuan P Yu CBao  X. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports20155(9270): 1–10

[20]

Luo LDai  CZhang A Wang JLiu  MSong C Guo X. Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Advances20155(37): 29509–29512

[21]

Bouazizi NOuargli  RNousir S Slama R B Azzouz A. Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. Journal of Physics and Chemistry of Solids201577: 172–177

[22]

Georgieva VAnfray  CRetoux R Valtchev V Valable S Mintova S. Iron loaded EMT nanosized zeolite with high affinity towards CO2 and NO. Microporous and Mesoporous Materials2016232: 256–263

[23]

Suri KAnnapoorni  SSarkar A K Tandon R P. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sensors and Actuators. B, Chemical200281(2-3): 277–282

[24]

Mcdonagh C MShields  MMcevoy K Maccraith B D Gouin J F. Optical sol-gel-based dissolved oxygen sensor: Progress towards a commercial instrument. Journal of Sol-Gel Science and Technology199813(1-3): 207–211

[25]

Ishiji TChipman  D WTakahashi  TTakahashi K. Amperometric sensor for monitoring of dissolved carbon dioxide in seawater. Sensors and Actuators. B, Chemical200176(1-3): 265–269

[26]

Guéguen CTortell  P D. High-resolution measurement of southern ocean CO2 and O2/Ar by membrane inlet mass spectrometry. Marine Chemistry2008108(3-4): 184–194

[27]

Higgins CWencel  DBurke C S MacCraith B D McDonagh C. Novel hybrid optical sensor materials for in-breath O(2) analysis. Analyst (London)2008133(2): 241–247

[28]

Hoelper B MAlessandri  BHeimann A Behr RKempski  O. Brain oxygen monitoring: In-vitro accuracy, long-term drift and response-time of Licox- and Neurotrend sensors. Acta Neurochirurgica2005147(7): 767–774

[29]

Baldini FFalai  ADe Gaudio R Landi D Lueger A Mencaglia A Scherr D Trettnak W. Continuous monitoring of gastric carbon dioxide with optical fibres. Sensors and Actuators. B, Chemical200390(1-3): 132–138

[30]

Čajlaković M Bizzarri A Ribitsch V. Luminescence lifetime-based carbon dioxide optical sensor for clinical applications. Analytica Chimica Acta2006573-574: 57–64

[31]

Wolfbeis O SKlimant  IWerner T Huber C Kosch U Krause C Neurauter G Dürkop A. Set of luminescence decay time based chemical sensors for clinical applications. Sensors and Actuators. B, Chemical199851(1-3): 17–24

[32]

Mills A. Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews200534(12): 1003–1011

[33]

Chaix EGuillaume  CGuillard V. Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: A review of past and current knowledge. Comprehensive Reviews in Food Science and Food Safety201413(3): 261–286

[34]

Ge XHanson  MShen H Kostov Y Brorson K Frey D D Moreira A R Rao G. Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. Journal of Biotechnology2006122(3): 293–306

[35]

Ge XKostov  YRao G. Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnology and Bioengineering200589(3): 329–334

[36]

Mulrooney JClifford  JFitzpatrick C Lewis E. Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sensors and Actuators. A, Physical2007136(1): 104–110

[37]

Litzelman S J Rothschild A Tuller H L. The electrical properties and stability of SrTi0.65Fe0.35O3-δ thin films for automotive oxygen sensor applications. Sensors and Actuators. B, Chemical2005108(1-2): 231–237

[38]

Souici AWong  K LDe Waele  VMarignier J L Metzger T H Keghouche N Mintova S Mostafavi M. Capturing the formation of sub-nanometer sized CdS clusters in LTL zeolite. Journal of Physical Chemistry C2014118(12): 6324–6334

[39]

Hölzl MMintova  SBein T. Colloidal LTL zeolite synthesized under microwave irradiation. Studies in Surface Science and Catalysis2005, 158(5): 11–18

[40]

Lakiss LYordanov  IMajano G Metzger T Mintova S. Effect of stabilizing binder and dispersion media on spin-on zeolite thin films. Thin Solid Films2010518(8): 2241–2246

[41]

Lowell S. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density.  Netherlands: Springer, 2004, 58–81

[42]

Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry198557(4): 603–619

[43]

Das DRavichandran  GChakrabarty D K Piramanayagam S N Shringi S N. Selective synthesis of light alkenes from carbon monoxide and hydrogen on silicalite supported iron-manganese catalysts. Applied Catalysis A, General1993107(1): 73–81

[44]

Guo LHuang  QLi X Yang S. Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics20013(9): 1661–1665

[45]

Bordiga SBuzzoni  RGeobaldo F Lamberti C Giamello E Zecchina A Leofanti G Petrini G Tozzola G Vlaic G. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Journal of Catalysis1996158(2): 486–501

[46]

Pérez-Ramírez J Groen J C Brückner A Kumar M S Bentrup U Debbagh M N Villaescusa L A. Evolution of isomorphously substituted iron zeolites during activation: Comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis2005232(2): 318–334

[47]

Mintova SBein  T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials200113(24): 1880–1883

[48]

Mintova SValtchev  VKonstantinov L. Adhesivity of molecular sieve films on metal substrates. Zeolites199617(5-6): 462–465

[49]

Andrews LChertihin  G VCitra  ANeurock M. Reactions of laser-ablated iron atoms with N2O, NO, and O2 in condensing nitrogen. Infrared spectra and density functional calculations of ternary iron nitride oxide molecules. Journal of Physical Chemistry1996100(27): 11235–11241

[50]

Reiff W MBaker  W AErickson  N E. Binuclear, oxygen-bridged complexes of iron(III). New iron (III)-2,2′2"-terpyridine complexes. Journal of the American Chemical Society196890(18): 4794–4800

[51]

Dalla Betta R A Garten R L Boudart M. Infrared examination of the reversible oxidation of ferrous ions in Y zeolite. Journal of Catalysis197641(1): 40–45

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (475KB)

2390

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/