Frontiers of Chemical Science and Engineering >
Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs
Received date: 22 May 2017
Accepted date: 17 Sep 2017
Published date: 26 Feb 2018
Copyright
A bubbling fluidized bed pyrolyzer was integrated with an in-situ honeycomb as a catalytic upgrading zone for the conversion of biomass to liquid fuels. In the upgrading zone, zeolite coated ceramic honeycomb (ZCCH) catalysts consisting of ZSM-5 (Si/Al=25) were stacked and N2 or recycled non-condensable gas was used as a carrier gas. Ground corncob particles were fast pyrolyzed in the bubbling bed using fine sand particles as a heat carrier and the resulting pyrolysis vapors were passed on-line over the catalytic upgrading zone. The influence of carrier gas, temperature, and weight hourly space velocity (WHSV) of catalyst on the oil product properties, distribution and mass balance were studied. Using ZCCH effectively increased the hydrocarbon yield and the heating value of the dry oil, especially in the presence of the recycled noncondensable gas. Even a low usage of zeolite catalyst at WSHV of 180 h−1 was effective in upgrading the pyrolysis oil and other light olefins. The highest hydrocarbon (≥C2) and liquid aromatics yields reached to 14.23 and 4.17 wt-%, respectively. The undesirable products including light oxygenates, furans dramatically decreased in the presence of the ZCCH catalyst.
Liaoyuan Mao , Yanxin Li , Z. Conrad Zhang . Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(1) : 50 -58 . DOI: 10.1007/s11705-017-1685-4
1 |
Huber G W, Chheda J N, Barrett C J, Dumesic J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 2005, 308(5727): 2075–2078
|
2 |
Cortright R D, Davda R R, Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 2002, 418(6901): 964–967
|
3 |
Huber G W, Dumesic J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 2006, 111(1-2): 119–132
|
4 |
Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 2004, 18(2): 590–598
|
5 |
Huber G W, Ibarra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098
|
6 |
Bridgwater A V, Bridge S A. A review of biomass pyrolysis and pyrolysis technologies. In: Bridgwater A V, Grassi G, eds. Biomass Pyrolysis Liquids Upgrading and Utilisation. London: Elsevier Applied Science, 1991, 11–92
|
7 |
Zhang H, Carlson T R, Xiao R, Huber G W. Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor. Green Chemistry, 2012, 14(1): 98–110
|
8 |
Elliott D C, Beckman D, Bridgwater A V, Diebold J P, Gevert S B, Solantausta Y. Developments in direct thermochemical liquefaction of biomass: 1983‒1990. Energy & Fuels, 1991, 5(3): 399–410
|
9 |
Edward F. Catalytic hydrodeoxygenation. Applied Catalysis A, General, 2000, 199(2): 147–190
|
10 |
Valle B, Gayubo A G, Atutxa A, Alonso A, Bilbao J. Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil. International Journal of Chemical Reactor Engineering, 2007, 5(1): 1–13
|
11 |
Gayubo A G, Valle B, Aguayo A T, Olazar M, Bilbao J. Olefin production by catalytic transformation of crude bio-oil in a two-step process. Industrial & Engineering Chemistry Research, 2010, 49(1): 123–131
|
12 |
Srinivas S T, Dalai A K, Bakhshi N N. Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system. Chemical Engineering Journal, 2000, 78(2): 343–354
|
13 |
Valle B, Atutxa A, Aguayo A T, Olazar M, Gayubo A G. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 2005, 106(1-4): 118–122
|
14 |
Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 2003, 216(1): 298–312
|
15 |
Gayubo A G, Aguayo A T, Atutxa A, Aguado R, Olazar M, Bilbao J, Olazar M, Bilbao J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids. Industrial & Engineering Chemistry Research, 2004, 43(11): 2619–2626
|
16 |
Aho A, Kumar N, Eränen K, Salmi T, Hupa M, Murzin D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel, 2008, 87(12): 2493–2501
|
17 |
Alaitz A, Roberto A, Ana G G, Martin O, Javier B. Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor. Energy & Fuels, 2005, 19(3): 765–774
|
18 |
Lappas A A, Samolada M C, Iatridis D K, Voutetakis S S, Vasalos I A. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel, 2002, 81(16): 2087–2095
|
19 |
Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 2003, 216(1-2): 298–312
|
20 |
Renaud M, Grandmaison J L, Roy C, Kaliaguine S. Low-Pressure Upgrading of Vacuum-Pyrolysis Oils from Wood. Pyrolysis Oils from Biomass. Washington DC: ACS, 1988, 290–310
|
21 |
Sharma R K, Bakhshi N N. Catalytic upgrading of pyrolysis oil. Energy & Fuels, 1993, 7(2): 306–314
|
22 |
Chantal P D, Kaliaguin S, Grandmaison J L, Mahay A. Production of hydrocarbons from aspen poplar pyrolytic oils over H-ZSM5. Applied Catalysis, 1984, 10(3): 317–332
|
23 |
Carlson T R, Cheng Y T, Jaea J, Huber G W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy & Environmental Science, 2011, 4(1): 145–161
|
24 |
Williams P T, Horne P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 1995, 31(2): 39–61
|
25 |
Aho A, Kumar N, Eränen K, Hupa M, Salmi T, Murzin D Y. Zeolite-bentonite hybrid catalysts for the pyrolysis of woody biomass. Studies in Surface Science and Catalysis, 2008, 174(1): 1069–1074
|
26 |
Aho A, Kumar N, Lashkul A V, Eränen K, Murzin D. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor. Fuel, 2010, 89(8): 1992–2000
|
27 |
Adama J, Antonakoub E, Lappasb A, Stöckerc M, Nilsenc M H, Bouzgac A, Hustada J E, Øyed G. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials, 2006, 96(1-3): 93–101
|
28 |
Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007, 48(1): 87–92
|
29 |
Diebold J P, Chum H L, Evans R J, Milne T A, Reed T B, Scahill J W. In: Klass D L. ed. Energy from Biomass and Wastes X. London: IGT Chicago and Elsevier Applied Sciences Publishers, 1987, 801
|
30 |
Diebold J, Scahill J. Biomass to gasoline: Upgrading pyrolysis vapors to aromatic gasoline with zeolites catalysis at atmospheric pressure. In: Soltes E J, Milne T A, eds. Pyrolysis Liquids from Biomass. Washington DC: ACS, 1988, 264–276
|
31 |
Diebold J P, Beckman D, Bridgwater A V, Elliott D C, Solantausta Y. IEA technoeconomic analysis of the thermochemical conversion of biomass to gasoline by the NREL process. In: Bridgwater A V, ed. Advances in Thermochemical Biomass Conversion. Berlin: Springer Netherlands, 1994, 1325–1342
|
32 |
Evans R, Milne T. Molecular-beam, mass spectrometric studies of wood vapor and model compounds over an HSZM-5 catalyst. In: Soltes E J, Milne T A, eds. Pyrolysis Liquids from Biomass. Washington DC: ACS, 1988, 311–327
|
33 |
French R, Czernik S. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 2010, 91(1): 25–32
|
34 |
Zhang Q, Chang J, Wang T, Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007, 48(1): 87–92
|
35 |
Stefanidis S D, Kalogiannis K G, Iliopoulou E F, Lappas A A, Pilavachi P A. In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor. Bioresource Technology, 2011, 102(17): 8261–8267
|
36 |
Cybulski A, Moulijn J. Monoliths in heterogeneous catalysis. Catalysis Reviews. Science and Engineering, 1994, 36(2): 179–270
|
37 |
Evans R J, Milne T A. In: Soltes E J, Milne T A, eds. Pyrolysis Oils from Biomass, Producing, Analysing and Upgrading. ACS Symposium Series 376. Washington DC: American Chemical Society, 1988, 328–341
|
38 |
Huber G W, Iborra S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098
|
39 |
Kharas K C, Robota H J, Liu D J. Deactivation in Cu-ZSM-5 lean-burn catalysts. Applied Catalysis B: Environmental, 1993, 2(2-3): 225–237
|
40 |
Vitolo S, Bresci B, Seggiani M, Gallo M G. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: Behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel, 2001, 80(1): 17–26
|
41 |
Foster A J, Jae J, Cheng Y T, Huber G W, Lobo R F. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis A, General, 2012, 423-424: 154–161
|
42 |
Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Applied Catalysis A, General, 2014, 470(2): 115–122
|
/
〈 | 〉 |