Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs

Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang

PDF(258 KB)
PDF(258 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 50-58. DOI: 10.1007/s11705-017-1685-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs

Author information +
History +

Abstract

A bubbling fluidized bed pyrolyzer was integrated with an in-situ honeycomb as a catalytic upgrading zone for the conversion of biomass to liquid fuels. In the upgrading zone, zeolite coated ceramic honeycomb (ZCCH) catalysts consisting of ZSM-5 (Si/Al=25) were stacked and N2 or recycled non-condensable gas was used as a carrier gas. Ground corncob particles were fast pyrolyzed in the bubbling bed using fine sand particles as a heat carrier and the resulting pyrolysis vapors were passed on-line over the catalytic upgrading zone. The influence of carrier gas, temperature, and weight hourly space velocity (WHSV) of catalyst on the oil product properties, distribution and mass balance were studied. Using ZCCH effectively increased the hydrocarbon yield and the heating value of the dry oil, especially in the presence of the recycled noncondensable gas. Even a low usage of zeolite catalyst at WSHV of 180 h1 was effective in upgrading the pyrolysis oil and other light olefins. The highest hydrocarbon (≥C2) and liquid aromatics yields reached to 14.23 and 4.17 wt-%, respectively. The undesirable products including light oxygenates, furans dramatically decreased in the presence of the ZCCH catalyst.

Graphical abstract

Keywords

corncob / monolith / upgrading / pyrolysis

Cite this article

Download citation ▾
Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang. Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs. Front. Chem. Sci. Eng., 2018, 12(1): 50‒58 https://doi.org/10.1007/s11705-017-1685-4

References

[1]
Huber G W, Chheda  J N, Barrett  C J, Dumesic  J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science, 2005, 308(5727): 2075–2078
CrossRef Google scholar
[2]
Cortright R D,  Davda R R,  Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature, 2002, 418(6901): 964–967
CrossRef Google scholar
[3]
Huber G W, Dumesic  J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today, 2006, 111(1-2): 119–132
CrossRef Google scholar
[4]
Czernik S, Bridgwater  A V. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels, 2004, 18(2): 590–598
CrossRef Google scholar
[5]
Huber G W, Ibarra  S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098
CrossRef Google scholar
[6]
Bridgwater A V,  Bridge S A. A review of biomass pyrolysis and pyrolysis technologies. In: Bridgwater A V, Grassi G, eds. Biomass Pyrolysis Liquids Upgrading and Utilisation. London: Elsevier Applied Science, 1991, 11–92
[7]
Zhang H, Carlson  T R, Xiao  R, Huber G W. Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor. Green Chemistry, 2012, 14(1): 98–110
CrossRef Google scholar
[8]
Elliott D C, Beckman  D, Bridgwater A V,  Diebold J P,  Gevert S B,  Solantausta Y. Developments in direct thermochemical liquefaction of biomass: 1983‒1990. Energy & Fuels, 1991, 5(3): 399–410
CrossRef Google scholar
[9]
Edward F. Catalytic hydrodeoxygenation. Applied Catalysis A, General, 2000, 199(2): 147–190
CrossRef Google scholar
[10]
Valle B, Gayubo  A G, Atutxa  A, Alonso A,  Bilbao J. Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil. International Journal of Chemical Reactor Engineering, 2007, 5(1): 1–13
CrossRef Google scholar
[11]
Gayubo A G, Valle  B, Aguayo A T,  Olazar M,  Bilbao J. Olefin production by catalytic transformation of crude bio-oil in a two-step process. Industrial & Engineering Chemistry Research, 2010, 49(1): 123–131
CrossRef Google scholar
[12]
Srinivas S T, Dalai  A K, Bakhshi  N N. Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system. Chemical Engineering Journal, 2000, 78(2): 343–354
[13]
Valle B, Atutxa  A, Aguayo A T,  Olazar M,  Gayubo A G. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today, 2005, 106(1-4): 118–122
CrossRef Google scholar
[14]
Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 2003, 216(1): 298–312
CrossRef Google scholar
[15]
Gayubo A G, Aguayo  A T, Atutxa  A, Aguado R,  Olazar M,  Bilbao J, Olazar M, Bilbao J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids. Industrial & Engineering Chemistry Research, 2004, 43(11): 2619–2626
CrossRef Google scholar
[16]
Aho A, Kumar  N, Eränen K,  Salmi T,  Hupa M, Murzin  D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel, 2008, 87(12): 2493–2501
CrossRef Google scholar
[17]
Alaitz A, Roberto  A, Ana G G,  Martin O,  Javier B. Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor. Energy & Fuels, 2005, 19(3): 765–774
CrossRef Google scholar
[18]
Lappas A A, Samolada  M C, Iatridis  D K, Voutetakis  S S, Vasalos  I A. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel, 2002, 81(16): 2087–2095
CrossRef Google scholar
[19]
Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 2003, 216(1-2): 298–312
CrossRef Google scholar
[20]
Renaud M, Grandmaison  J L, Roy  C, Kaliaguine S. Low-Pressure Upgrading of Vacuum-Pyrolysis Oils from Wood. Pyrolysis Oils from Biomass. Washington DC: ACS, 1988, 290–310
[21]
Sharma R K, Bakhshi  N N. Catalytic upgrading of pyrolysis oil. Energy & Fuels, 1993, 7(2): 306–314
CrossRef Google scholar
[22]
Chantal P D, Kaliaguin  S, Grandmaison J L,  Mahay A. Production of hydrocarbons from aspen poplar pyrolytic oils over H-ZSM5. Applied Catalysis, 1984, 10(3): 317–332
CrossRef Google scholar
[23]
Carlson T R, Cheng  Y T, Jaea  J, Huber G W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy & Environmental Science, 2011, 4(1): 145–161
CrossRef Google scholar
[24]
Williams P T, Horne  P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis, 1995, 31(2): 39–61
CrossRef Google scholar
[25]
Aho A, Kumar  N, Eränen K,  Hupa M, Salmi  T, Murzin D Y. Zeolite-bentonite hybrid catalysts for the pyrolysis of woody biomass. Studies in Surface Science and Catalysis, 2008, 174(1): 1069–1074
CrossRef Google scholar
[26]
Aho A, Kumar  N, Lashkul A V,  Eränen K,  Murzin D. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor. Fuel, 2010, 89(8): 1992–2000
CrossRef Google scholar
[27]
Adama J, Antonakoub  E, Lappasb A,  Stöckerc M,  Nilsenc M H,  Bouzgac A,  Hustada J E,  Øyed G. In situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials, 2006, 96(1-3): 93–101
CrossRef Google scholar
[28]
Zhang Q, Chang  J, Wang T,  Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007, 48(1): 87–92
CrossRef Google scholar
[29]
Diebold J P, Chum  H L, Evans  R J, Milne  T A, Reed  T B, Scahill  J W. In: Klass D L. ed. Energy from Biomass and Wastes X. London: IGT Chicago and Elsevier Applied Sciences Publishers, 1987,  801
[30]
Diebold J, Scahill  J. Biomass to gasoline: Upgrading pyrolysis vapors to aromatic gasoline with zeolites catalysis at atmospheric pressure. In: Soltes E J, Milne T A, eds. Pyrolysis Liquids from Biomass. Washington DC: ACS, 1988, 264–276
[31]
Diebold J P, Beckman  D, Bridgwater A V,  Elliott D C,  Solantausta Y. IEA technoeconomic analysis of the thermochemical conversion of biomass to gasoline by the NREL process. In: Bridgwater A V, ed. Advances in Thermochemical Biomass Conversion. Berlin: Springer Netherlands, 1994, 1325–1342
[32]
Evans R, Milne  T. Molecular-beam, mass spectrometric studies of wood vapor and model compounds over an HSZM-5 catalyst. In: Soltes E J, Milne T A, eds. Pyrolysis Liquids from Biomass. Washington DC: ACS, 1988, 311–327
[33]
French R, Czernik  S. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 2010, 91(1): 25–32
CrossRef Google scholar
[34]
Zhang Q, Chang  J, Wang T,  Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management, 2007, 48(1): 87–92
CrossRef Google scholar
[35]
Stefanidis S D,  Kalogiannis K G,  Iliopoulou E F,  Lappas A A,  Pilavachi P A. In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor. Bioresource Technology, 2011, 102(17): 8261–8267
CrossRef Google scholar
[36]
Cybulski A, Moulijn  J. Monoliths in heterogeneous catalysis. Catalysis Reviews. Science and Engineering, 1994, 36(2): 179–270
CrossRef Google scholar
[37]
Evans R J, Milne  T A. In: Soltes E J, Milne T A, eds. Pyrolysis Oils from Biomass, Producing, Analysing and Upgrading. ACS Symposium Series 376. Washington DC: American Chemical Society, 1988, 328–341
[38]
Huber G W, Iborra  S, Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews, 2006, 106(9): 4044–4098
CrossRef Google scholar
[39]
Kharas K C, Robota  H J, Liu  D J. Deactivation in Cu-ZSM-5 lean-burn catalysts. Applied Catalysis B: Environmental, 1993, 2(2-3): 225–237
CrossRef Google scholar
[40]
Vitolo S, Bresci  B, Seggiani M,  Gallo M G. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: Behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel, 2001, 80(1): 17–26
CrossRef Google scholar
[41]
Foster A J, Jae  J, Cheng Y T,  Huber G W,  Lobo R F. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis A, General, 2012, 423-424: 154–161
CrossRef Google scholar
[42]
Li J, Li  X, Zhou G,  Wang W, Wang  C, Komarneni S,  Wang Y. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Applied Catalysis A, General, 2014, 470(2): 115–122

Acknowledgements

This research was supported by the CAS/SAFEA International Partnership Program for Creative Research Teams. The National Science Fund Projects (Y731410602) and the Chinese Government “Thousand Talent” program funding.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(258 KB)

Accesses

Citations

Detail

Sections
Recommended

/