Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs

Liaoyuan Mao , Yanxin Li , Z. Conrad Zhang

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 50 -58.

PDF (258KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 50 -58. DOI: 10.1007/s11705-017-1685-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs

Author information +
History +
PDF (258KB)

Abstract

A bubbling fluidized bed pyrolyzer was integrated with an in-situ honeycomb as a catalytic upgrading zone for the conversion of biomass to liquid fuels. In the upgrading zone, zeolite coated ceramic honeycomb (ZCCH) catalysts consisting of ZSM-5 (Si/Al=25) were stacked and N2 or recycled non-condensable gas was used as a carrier gas. Ground corncob particles were fast pyrolyzed in the bubbling bed using fine sand particles as a heat carrier and the resulting pyrolysis vapors were passed on-line over the catalytic upgrading zone. The influence of carrier gas, temperature, and weight hourly space velocity (WHSV) of catalyst on the oil product properties, distribution and mass balance were studied. Using ZCCH effectively increased the hydrocarbon yield and the heating value of the dry oil, especially in the presence of the recycled noncondensable gas. Even a low usage of zeolite catalyst at WSHV of 180 h1 was effective in upgrading the pyrolysis oil and other light olefins. The highest hydrocarbon (≥C2) and liquid aromatics yields reached to 14.23 and 4.17 wt-%, respectively. The undesirable products including light oxygenates, furans dramatically decreased in the presence of the ZCCH catalyst.

Graphical abstract

Keywords

corncob / monolith / upgrading / pyrolysis

Cite this article

Download citation ▾
Liaoyuan Mao, Yanxin Li, Z. Conrad Zhang. Upgrading of derived pyrolysis vapors for the production of biofuels from corncobs. Front. Chem. Sci. Eng., 2018, 12(1): 50-58 DOI:10.1007/s11705-017-1685-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huber G WChheda  J NBarrett  C JDumesic  J A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science2005308(5727): 2075–2078

[2]

Cortright R D Davda R R Dumesic J A. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water. Nature2002418(6901): 964–967

[3]

Huber G WDumesic  J A. An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catalysis Today2006111(1-2): 119–132

[4]

Czernik SBridgwater  A V. Overview of applications of biomass fast pyrolysis oil. Energy & Fuels200418(2): 590–598

[5]

Huber G WIbarra  SCorma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews2006106(9): 4044–4098

[6]

Bridgwater A V Bridge S A. A review of biomass pyrolysis and pyrolysis technologies. In: Bridgwater A V, Grassi G, eds. Biomass Pyrolysis Liquids Upgrading and Utilisation. London: Elsevier Applied Science, 1991, 11–92

[7]

Zhang HCarlson  T RXiao  RHuber G W. Catalytic fast pyrolysis of wood and alcohol mixtures in a fluidized bed reactor. Green Chemistry201214(1): 98–110

[8]

Elliott D CBeckman  DBridgwater A V Diebold J P Gevert S B Solantausta Y. Developments in direct thermochemical liquefaction of biomass: 1983‒1990. Energy & Fuels19915(3): 399–410

[9]

Edward F. Catalytic hydrodeoxygenation. Applied Catalysis A, General2000199(2): 147–190

[10]

Valle BGayubo  A GAtutxa  AAlonso A Bilbao J. Integration of thermal treatment and catalytic transformation for upgrading biomass pyrolysis oil. International Journal of Chemical Reactor Engineering20075(1): 1–13

[11]

Gayubo A GValle  BAguayo A T Olazar M Bilbao J. Olefin production by catalytic transformation of crude bio-oil in a two-step process. Industrial & Engineering Chemistry Research201049(1): 123–131

[12]

Srinivas S TDalai  A KBakhshi  N N. Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system. Chemical Engineering Journal200078(2): 343–354

[13]

Valle BAtutxa  AAguayo A T Olazar M Gayubo A G. Effect of nickel incorporation on the acidity and stability of HZSM-5 zeolite in the MTO process. Catalysis Today2005106(1-4): 118–122

[14]

Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis2003216(1): 298–312

[15]

Gayubo A GAguayo  A TAtutxa  AAguado R Olazar M Bilbao J, Olazar M, Bilbao J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. Aldehydes, ketones, and acids. Industrial & Engineering Chemistry Research200443(11): 2619–2626

[16]

Aho AKumar  NEränen K Salmi T Hupa MMurzin  D Y. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: Influence of the zeolite structure. Fuel200887(12): 2493–2501

[17]

Alaitz ARoberto  AAna G G Martin O Javier B. Kinetic description of the catalytic pyrolysis of biomass in a conical spouted bed reactor. Energy & Fuels200519(3): 765–774

[18]

Lappas A ASamolada  M CIatridis  D KVoutetakis  S SVasalos  I A. Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel200281(16): 2087–2095

[19]

Corma A. State of the art and future challenges of zeolites as catalysts. Journal of Catalysis2003216(1-2): 298–312

[20]

Renaud MGrandmaison  J LRoy  CKaliaguine S. Low-Pressure Upgrading of Vacuum-Pyrolysis Oils from Wood. Pyrolysis Oils from Biomass. Washington DC: ACS, 1988, 290–310

[21]

Sharma R KBakhshi  N N. Catalytic upgrading of pyrolysis oil. Energy & Fuels19937(2): 306–314

[22]

Chantal P DKaliaguin  SGrandmaison J L Mahay A. Production of hydrocarbons from aspen poplar pyrolytic oils over H-ZSM5. Applied Catalysis198410(3): 317–332

[23]

Carlson T RCheng  Y TJaea  JHuber G W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy & Environmental Science20114(1): 145–161

[24]

Williams P THorne  P A. The influence of catalyst type on the composition of upgraded biomass pyrolysis oils. Journal of Analytical and Applied Pyrolysis199531(2): 39–61

[25]

Aho AKumar  NEränen K Hupa MSalmi  TMurzin D Y. Zeolite-bentonite hybrid catalysts for the pyrolysis of woody biomass. Studies in Surface Science and Catalysis2008174(1): 1069–1074

[26]

Aho AKumar  NLashkul A V Eränen K Murzin D. Catalytic upgrading of woody biomass derived pyrolysis vapours over iron modified zeolites in a dual-fluidized bed reactor. Fuel201089(8): 1992–2000

[27]

Adama JAntonakoub  ELappasb A Stöckerc M Nilsenc M H Bouzgac A Hustada J E Øyed GIn situ catalytic upgrading of biomass derived fast pyrolysis vapours in a fixed bed reactor using mesoporous materials. Microporous and Mesoporous Materials200696(1-3): 93–101

[28]

Zhang QChang  JWang T Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management200748(1): 87–92

[29]

Diebold J PChum  H LEvans  R JMilne  T AReed  T BScahill  J W. In: Klass D L. ed. Energy from Biomass and Wastes X. London: IGT Chicago and Elsevier Applied Sciences Publishers, 1987,  801

[30]

Diebold JScahill  J. Biomass to gasoline: Upgrading pyrolysis vapors to aromatic gasoline with zeolites catalysis at atmospheric pressure. In: Soltes E J, Milne T A, eds. Pyrolysis Liquids from Biomass. Washington DC: ACS, 1988, 264–276

[31]

Diebold J PBeckman  DBridgwater A V Elliott D C Solantausta Y. IEA technoeconomic analysis of the thermochemical conversion of biomass to gasoline by the NREL process. In: Bridgwater A V, ed. Advances in Thermochemical Biomass Conversion. Berlin: Springer Netherlands, 1994, 1325–1342

[32]

Evans RMilne  T. Molecular-beam, mass spectrometric studies of wood vapor and model compounds over an HSZM-5 catalyst. In: Soltes E J, Milne T A, eds. Pyrolysis Liquids from Biomass. Washington DC: ACS, 1988, 311–327

[33]

French RCzernik  S. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology201091(1): 25–32

[34]

Zhang QChang  JWang T Xu Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Conversion and Management200748(1): 87–92

[35]

Stefanidis S D Kalogiannis K G Iliopoulou E F Lappas A A Pilavachi P AIn-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor. Bioresource Technology2011102(17): 8261–8267

[36]

Cybulski AMoulijn  J. Monoliths in heterogeneous catalysis. Catalysis Reviews. Science and Engineering199436(2): 179–270

[37]

Evans R JMilne  T A. In: Soltes E J, Milne T A, eds. Pyrolysis Oils from Biomass, Producing, Analysing and Upgrading. ACS Symposium Series 376. Washington DC: American Chemical Society, 1988, 328–341

[38]

Huber G WIborra  SCorma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews2006106(9): 4044–4098

[39]

Kharas K CRobota  H JLiu  D J. Deactivation in Cu-ZSM-5 lean-burn catalysts. Applied Catalysis B: Environmental19932(2-3): 225–237

[40]

Vitolo SBresci  BSeggiani M Gallo M G. Catalytic upgrading of pyrolytic oils over HZSM-5 zeolite: Behaviour of the catalyst when used in repeated upgrading-regenerating cycles. Fuel200180(1): 17–26

[41]

Foster A JJae  JCheng Y T Huber G W Lobo R F. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Applied Catalysis A, General2012423-424: 154–161

[42]

Li JLi  XZhou G Wang WWang  CKomarneni S Wang Y. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Applied Catalysis A, General2014470(2): 115–122

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (258KB)

3052

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/