RESEARCH ARTICLE

Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films

  • Bozhen Wu 1 ,
  • Biyao Geng 2,3 ,
  • Yufei Chen 2,3 ,
  • Hongzhi Liu , 2,3 ,
  • Guangyao Li , 3 ,
  • Qiang Wu , 2,3
Expand
  • 1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
  • 2. Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-efficiency Utilization, Hangzhou 311300, China
  • 3. School of Engineering, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China

Received date: 07 Jun 2017

Accepted date: 20 Jul 2017

Published date: 06 Nov 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

Bleached bamboo kraft pulp was pretreated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation using a TEMPO/NaBr/NaClO system at pH= 10 in water to facilitate mechanical disintegration into TEMPO-oxidized cellulose nanofibrils (TO-CNs). A series of TO-CNs with different carboxylate contents were obtained by varying amounts of added NaClO. An increase in carboxylate contents results in aqueous TO-CN dispersions with higher yield, zeta potential values, and optical transparency. When carboxylate groups are introduced, the DPv value of the TO-CNs remarkably decreases and then levels off. And the presence of hemicellulose in the pulp is favorable to TEMPO oxidization. After the oxidization, the native cellulose I crystalline structure and crystal size of bamboo pulp are almost maintained. TEM micrographs revealed that the degree of nanofibrillation is directly proportional to the carboxylate contents. With increasing carboxylate contents, the free-standing TO-CN films becomes more transparent and mechanically stronger. The oxygen permeability of PLA films drastically decreases from 355 for neat PLA to 8.4 mL·m−2·d1 after coating a thin layer of TO-CN with a carboxylate content of 1.8 mmol·g−1. Therefore, inexpensive and abundant bamboo pulp would be a promising starting material to isolate cellulose nanfibrils for oxygen-barrier applications.

Cite this article

Bozhen Wu , Biyao Geng , Yufei Chen , Hongzhi Liu , Guangyao Li , Qiang Wu . Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(4) : 554 -563 . DOI: 10.1007/s11705-017-1673-8

Acknowledgements

The authors are grateful for the financial supports from the Public Welfare Projects of Zhejiang Province (No. 2016C33029 & 2017C33113), the National Natural Science Foundation of China (Grant No. 21404092), and Scientific Research Foundation of Zhejiang Agricultural & Forestry University (No. 2013FR088).
1
Siró I, Plackett  D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose (London, England), 2010, 17(3): 459–494

DOI

2
Kalia S, Boufi  S, Celli A ,  Kango S . Nanofibrillated cellulose: Surface modification and potential applications. Colloid & Polymer Science, 2014, 292(1): 5–31

DOI

3
Dieter K, Friederike  K, Sebastian M ,  Tom L M ,  Mikael A ,  Derek G . Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition, 2011, 50(24): 5438–5466

DOI

4
Dufresne A. Nanocellulose: A new ageless bionanomaterial. Materials Today, 2013, 16(6): 220–227

DOI

5
Isogai A, Saito  T, Fukuzumi H . TEMPO-oxidized cellulose nanofibers. Nanoscale, 2011, 3(1): 71–85

DOI

6
Khalil H P S A ,  Davoudpour Y ,  Islam M N ,  Mustapha A ,  Sudesh K ,  Dungani R ,  Jawaid M . Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers, 2014, 99: 649–665

DOI

7
Besbes I, Alila  S, Boufi S . Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydrate Polymers, 2011, 84(3): 975–983

DOI

8
Tsuguyuki S, Yoshiharu  N, Jean-Luc P ,  Michel V ,  Akira I . Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules, 2006, 7(6): 1687–1691

DOI

9
Saito T, Kimura  S, Nishiyama Y ,  Isogai A . Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules, 2007, 8(8): 2485–2491

DOI

10
Puangsin B, Fujisawa  S, Kuramae R ,  Saito T ,  Isogai A . TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. Journal of Polymers and the Environment, 2013, 21(2): 555–563

DOI

11
Rodionova G, Saito  T, Lenes M ,  Eriksen Ø ,  Gregersen Ø ,  Fukuzumi H ,  Isogai A . Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose (London, England), 2012, 19(3): 705–711

DOI

12
Puangsin B, Yang  Q, Saito T ,  Isogai A . Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. International Journal of Biological Macromolecules, 2013, 59: 208–213

DOI

13
Sehaqui H, Zhou  Q, Ikkala O ,  Berglund L A . Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules, 2011, 12(10): 3638–3644

DOI

14
Montanari S, Roumani  M, Heux L ,  Vignon M R . Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules, 2005, 38(5): 1665–1671

DOI

15
Wang H, Zhang  X, Jiang Z ,  Li W, Yu  Y. A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Industrial Crops and Products, 2015, 71: 80–88

DOI

16
Saito T, Isogai  A. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules, 2004, 5(5): 1983–1989

DOI

17
Smith D K, Bampton  R F, Alexander  W J. Use of new solvents for evaluating chemical cellulose for the viscose process. Industrial & Engineering Chemistry Process Design and Development, 1963, 2(1): 57–62

DOI

18
Segal L, Creely  J, Martin A  Jr,  Conrad C . An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 1959, 29(10): 786–794

DOI

19
Scherrer P. Estimation of the size and internal structure of colloidal particles by means of röntgen.Nachr. Ges. Wiss. Gottingen, 1918, 2: 98–112

20
Jiang F, Esker  A R, Roman  M. Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir, 2010, 26(23): 17919–17925

DOI

21
Shinoda R, Saito  T, Okita Y ,  Isogai A . Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules, 2012, 13(3): 842–849

DOI

22
Jiang F, Hsieh  Y L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers, 2013, 95(1): 32–40

DOI

23
Fukuzumi H, Saito  T, Okita Y ,  Isogai A . Thermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation & Stability, 2010, 95(9): 1502–1508

DOI

24
Da Silva Perez D ,  Montanari S ,  Vignon M R . TEMPO-mediated oxidation of cellulose III. Biomacromolecules, 2003, 4(5): 1417–1425

DOI

25
Isogai T, Saito  T, Isogai A . Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose (London, England), 2011, 18(2): 421–431

DOI

26
Fukuzumi H, Saito  T, Iwata T ,  Kumamoto Y ,  Isogai A . Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules, 2008, 10(1): 162–165

DOI

27
Henriksson M, Berglund  L A, Isaksson  P, Lindström T ,  Nishino T . Cellulose nanopaper structures of high toughness. Biomacromolecules, 2008, 9(6): 1579–1585

DOI

Outlines

/