Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films

Bozhen Wu , Biyao Geng , Yufei Chen , Hongzhi Liu , Guangyao Li , Qiang Wu

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 554 -563.

PDF (385KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 554 -563. DOI: 10.1007/s11705-017-1673-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films

Author information +
History +
PDF (385KB)

Abstract

Bleached bamboo kraft pulp was pretreated by 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO)-mediated oxidation using a TEMPO/NaBr/NaClO system at pH= 10 in water to facilitate mechanical disintegration into TEMPO-oxidized cellulose nanofibrils (TO-CNs). A series of TO-CNs with different carboxylate contents were obtained by varying amounts of added NaClO. An increase in carboxylate contents results in aqueous TO-CN dispersions with higher yield, zeta potential values, and optical transparency. When carboxylate groups are introduced, the DPv value of the TO-CNs remarkably decreases and then levels off. And the presence of hemicellulose in the pulp is favorable to TEMPO oxidization. After the oxidization, the native cellulose I crystalline structure and crystal size of bamboo pulp are almost maintained. TEM micrographs revealed that the degree of nanofibrillation is directly proportional to the carboxylate contents. With increasing carboxylate contents, the free-standing TO-CN films becomes more transparent and mechanically stronger. The oxygen permeability of PLA films drastically decreases from 355 for neat PLA to 8.4 mL·m−2·d1 after coating a thin layer of TO-CN with a carboxylate content of 1.8 mmol·g−1. Therefore, inexpensive and abundant bamboo pulp would be a promising starting material to isolate cellulose nanfibrils for oxygen-barrier applications.

Graphical abstract

Keywords

bamboo / TEMPO / cellulose nanofibrils / oxygen barrier

Cite this article

Download citation ▾
Bozhen Wu, Biyao Geng, Yufei Chen, Hongzhi Liu, Guangyao Li, Qiang Wu. Preparation and characteristics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films. Front. Chem. Sci. Eng., 2017, 11(4): 554-563 DOI:10.1007/s11705-017-1673-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siró IPlackett  D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose (London, England)201017(3): 459–494

[2]

Kalia SBoufi  SCelli A Kango S . Nanofibrillated cellulose: Surface modification and potential applications. Colloid & Polymer Science2014292(1): 5–31

[3]

Dieter KFriederike  KSebastian M Tom L M Mikael A Derek G . Nanocelluloses: A new family of nature-based materials. Angewandte Chemie International Edition201150(24): 5438–5466

[4]

Dufresne A. Nanocellulose: A new ageless bionanomaterial. Materials Today201316(6): 220–227

[5]

Isogai ASaito  TFukuzumi H . TEMPO-oxidized cellulose nanofibers. Nanoscale20113(1): 71–85

[6]

Khalil H P S A Davoudpour Y Islam M N Mustapha A Sudesh K Dungani R Jawaid M . Production and modification of nanofibrillated cellulose using various mechanical processes: A review. Carbohydrate Polymers201499: 649–665

[7]

Besbes IAlila  SBoufi S . Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydrate Polymers201184(3): 975–983

[8]

Tsuguyuki SYoshiharu  NJean-Luc P Michel V Akira I . Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules20067(6): 1687–1691

[9]

Saito TKimura  SNishiyama Y Isogai A . Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules20078(8): 2485–2491

[10]

Puangsin BFujisawa  SKuramae R Saito T Isogai A . TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. Journal of Polymers and the Environment201321(2): 555–563

[11]

Rodionova GSaito  TLenes M Eriksen Ø Gregersen Ø Fukuzumi H Isogai A . Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and Eucalyptus pulps. Cellulose (London, England)201219(3): 705–711

[12]

Puangsin BYang  QSaito T Isogai A . Comparative characterization of TEMPO-oxidized cellulose nanofibril films prepared from non-wood resources. International Journal of Biological Macromolecules201359: 208–213

[13]

Sehaqui HZhou  QIkkala O Berglund L A . Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules201112(10): 3638–3644

[14]

Montanari SRoumani  MHeux L Vignon M R . Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules200538(5): 1665–1671

[15]

Wang HZhang  XJiang Z Li WYu  Y. A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens). Industrial Crops and Products201571: 80–88

[16]

Saito TIsogai  A. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules20045(5): 1983–1989

[17]

Smith D KBampton  R FAlexander  W J. Use of new solvents for evaluating chemical cellulose for the viscose process. Industrial & Engineering Chemistry Process Design and Development19632(1): 57–62

[18]

Segal LCreely  JMartin A  Jr,  Conrad C . An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal195929(10): 786–794

[19]

Scherrer P. Estimation of the size and internal structure of colloidal particles by means of röntgen.Nachr. Ges. Wiss. Gottingen19182: 98–112

[20]

Jiang FEsker  A RRoman  M. Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir201026(23): 17919–17925

[21]

Shinoda RSaito  TOkita Y Isogai A . Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules201213(3): 842–849

[22]

Jiang FHsieh  Y L. Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydrate Polymers201395(1): 32–40

[23]

Fukuzumi HSaito  TOkita Y Isogai A . Thermal stabilization of TEMPO-oxidized cellulose. Polymer Degradation & Stability201095(9): 1502–1508

[24]

Da Silva Perez D Montanari S Vignon M R . TEMPO-mediated oxidation of cellulose III. Biomacromolecules20034(5): 1417–1425

[25]

Isogai TSaito  TIsogai A . Wood cellulose nanofibrils prepared by TEMPO electro-mediated oxidation. Cellulose (London, England)201118(2): 421–431

[26]

Fukuzumi HSaito  TIwata T Kumamoto Y Isogai A . Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules200810(1): 162–165

[27]

Henriksson MBerglund  L AIsaksson  PLindström T Nishino T . Cellulose nanopaper structures of high toughness. Biomacromolecules20089(6): 1579–1585

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (385KB)

3031

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/