REVIEW ARTICLE

A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts

  • Cunyao Li 1 ,
  • Wenlong Wang 1 ,
  • Li Yan , 1 ,
  • Yunjie Ding , 1,2
Expand
  • 1. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • 2. State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Received date: 25 Apr 2017

Accepted date: 14 Jun 2017

Published date: 26 Feb 2018

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

Hydroformylation has been widely used in industry to manufacture high value-added aldehydes and alcohols, and is considered as the largest homogenously catalyzed process in industry. However, this process often suffers from complicated operation and the difficulty in catalyst recycling. It is highly desirable to develop a heterogeneous catalyst that enables the catalyst recovery without sacrificing the activity and selectivity. There are two strategies to afford such a catalyst for the hydrofromylation: immobilized catalysts on solid support and porous organic ligand (POL)-supported catalysts. In the latter, high concentration of phosphine ligands in the catalyst framework is favorable for the high dispersion of rhodium species and the formation of Rh-P multiple bonds, which endow the catalysts with high activity and stability respectively. Besides, the high linear regioselectivity could be achieved through the copolymerization of vinyl functionalized bidentate ligand (vinyl biphephos) and monodentate ligand (3vPPh3) into the catalyst framework. The newly-emerging POL-supported catalysts have great perspectives in the industrial hydroformylation.

Cite this article

Cunyao Li , Wenlong Wang , Li Yan , Yunjie Ding . A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts[J]. Frontiers of Chemical Science and Engineering, 2018 , 12(1) : 113 -123 . DOI: 10.1007/s11705-017-1672-9

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21273227 and 21403258) and the Strategic Priority Research Program of the Chinese Academy of Science (Grant Nos XDB17020400).
1
van Leeuwen P W N M, Claver C. Rhodium Catalyzed Hydroformylation. Berlin: Springer-Heidelberg, 2008, Chapter 1: 1–13

2
Franke R, Selent D, Börner A. Applied hydroformylation. Chemical Reviews, 2012, 112(11): 5675–5732

DOI

3
Hebrard F, Kalck P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chemical Reviews, 2009, 109(9): 4272–4282

DOI

4
Neves Â C B, Calvete M J F, Pinho e Melo T M V D, Pereira M M. Immobilized catalysts for hydroformylation reactions: A versatile tool for aldehyde synthesis. European Journal of Organic Chemistry, 2012, 2012: 6309–6320

5
Fleischer I, Wu L, Profir I, Jackstell R, Franke R, Beller M. Towards the development of a selective ruthenium-catalyzed hydroformylation of olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(32): 10589–10594

DOI

6
Fang X, Zhang M, Jackstell R, Beller M. Selective palladium-catalyzed hydroformylation of alkynes to α,β-unsaturated aldehydes. Angewandte Chemie International Edition, 2013, 52(17): 4645–4649

DOI

7
Kubis C, Baumann W, Barsch E, Selent D, Sawall M, Ludwig R, Neymeyr K, Hess D, Franke R, Börner A. Investigation into the equilibrium of iridium catalysts for the hydroformylation of olefins by combining in situ high-pressure FTIR and NMR spectroscopy. ACS Catalysis, 2014, 4(7): 2097–2108

DOI

8
Janssen M, Wilting J, Müller C, Vogt D. Continuous rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angewandte Chemie International Edition, 2010, 49(42): 7738–7741

DOI

9
Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by Employing a cooperative ligand system. Angewandte Chemie International Edition, 2012, 51(9): 2178–2182

DOI

10
Klähn M, Garland M V. On the mechanism of the catalytic binuclear elimination reaction in hydroformylation systems. ACS Catalysis, 2015, 5(4): 2301–2316

DOI

11
Cornils B, Herrmann W A, Rasch M. Otto Roelen, pioneer in industrial homogeneous catalysis. Angewandte Chemie International Edition in English, 1994, 33(21): 2144–2163

DOI

12
Roelen O. DE Patent, 849548, 1938

13
Roelen O. US Patent, 2327066, 1943

14
Haumann M, Jakuttis M, Franke R, Schönweiz A, Wasserscheid P. Continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts. ChemCatChem, 2011, 3(11): 1822–1827

DOI

15
Jacobs I, de Bruin B, Reek J N H. Comparison of the full catalytic cycle of hydroformylation mediated by mono- and bis-ligated triphenylphosphine-rhodium complexes by using DFT calculations. ChemCatChem, 2015, 7(11): 1708–1718

DOI

16
Brunsch Y, Behr A. Temperature-controlled catalyst recycling in homogeneous transition-metal catalysis: Minimization of catalyst leaching. Angewandte Chemie International Edition, 2013, 52(5): 1586–1589

DOI

17
Gellrich U, Seiche W, Keller M, Breit B. Mechanistic insights into a supramolecular self-assembling catalyst system: Evidence for hydrogen bonding during rhodium-catalyzed hydroformylation. Angewandte Chemie International Edition, 2012, 51(44): 11033–11038

DOI

18
Wu L, Fleischer I, Jackstell R, Profir I, Franke R, Beller M. Ruthenium-catalyzed hydroformylation/reduction of olefins to alcohols: Extending the scope to internal alkenes. Journal of the American Chemical Society, 2013, 135(38): 14306–14312

DOI

19
Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by employing a cooperative ligand system. Angewandte Chemie International Edition, 2012, 51(9): 2178–2182

DOI

20
Neubert P, Fuchs S, Behr A. Hydroformylation of piperylene and efficient catalyst recycling in propylene carbonate. Green Chemistry, 2015, 17(7): 4045–4052

DOI

21
Dydio P, Detz R J, de Bruin B, Reek J N H. Beyond classical reactivity patterns: Hydroformylation of vinyl and allyl arenes to valuable β-and γ-aldehyde intermediates using supramolecular catalysis. Journal of the American Chemical Society, 2014, 136(23): 8418–8429

DOI

22
Takahashi K, Yamashita M, Nozaki K. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst. Journal of the American Chemical Society, 2012, 134(45): 18746–18757

DOI

23
Dong K, Fang X, Jackstell R, Beller M. A novel rhodium-catalyzed domino-hydroformylation-reaction for the synthesis of sulphonamides. Chemical Communications, 2015, 51(24): 5059–5062

DOI

24
Fleischer I, Dyballa K M, Jennerjahn R, Jackstell R, Franke R, Spannenberg A, Beller M. From olefins to alcohols: Efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence. Angewandte Chemie International Edition, 2013, 52(10): 2949–2953

DOI

25
Takahashi K, Yamashita M, Tanaka Y, Nozaki K. Ruthenium/C5Me5/bisphosphine-or bisphosphite-based catalysts for normal-selective hydroformylation. Angewandte Chemie International Edition, 2012, 51(18): 4383–4387

DOI

26
Dydio P, Dzik W I, Lutz M, de Bruin B, Reek J N H. Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes. Angewandte Chemie International Edition, 2011, 50(2): 396–400

DOI

27
Jia X, Wang Z, Xia C, Ding K. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(48): 15288–15295

DOI

28
Agbossou F, Carpentier J F, Mortreux A. Asymmetric hydroformylation. Chemical Reviews, 1995, 95(7): 2485–2506

DOI

29
Pospech J, Fleischer I, Franke R, Buchholz S, Beller M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angewandte Chemie International Edition, 2013, 52(10): 2852–2872

DOI

30
Brown C K, Wilkinson G. Homogeneous hydroformylation of alkenes with hydridocarbonyltris-(triphenylphosphine) rhodium (I) as catalyst. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1970, 2753–2764

31
Evans D, Osborn J A, Wilkinson G. Hydroformylation of alkenes by use of rhodium complex catalysts. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968, 3133–3142

32
Herrmann W A, Schmid R, Kohlpaintner C W, Priermeier T. Structure and metal coordination of the diphosphine 2,2′-bis((diphenylphosphino)methyl)-1,1′-binaphthyl (NAPHOS). Organometallics, 1995, 14(4): 1961–1968

DOI

33
Casey C P, Paulsen E L, Beuttenmueller E W, Proft B R, Petrovich L M, Matter B A, Powell D R. Electron withdrawing substituents on equatorial and apical phosphines have opposite effects on the regioselectivity of rhodium catalyzed hydroformylation. Journal of the American Chemical Society, 1997, 119(49): 11817–11825

DOI

34
Casey C P, Whiteker G T, Melville M G, Petrovich L M, Gavney J A Jr, Powell D R. Diphosphines with natural bite angles near 120° increase selectivity for n-aldehyde formation in rhodium-catalyzed hydroformylation. Journal of the American Chemical Society, 1992, 114(14): 5535–5543

DOI

35
Herrmann W A, Kohlpaintner C W, Herdtweck E, Kiprof P. Structure and metal coordination of the diphosphane 2,2′-bis((diphenylphosphino) methyl)-1,1′-biphenyl (“BISBI”). Inorganic Chemistry, 1991, 30(22): 4271–4275

DOI

36
Billig E, Abatjoglou A G, Bryant D R. (a) EU Patent, 213639, 1987; (b) US Patent, 4748261, 1988

37
Behr A, Obst D, Schulte C, Schosser T. Highly selective tandem isomerization-hydroformylation reaction of trans-4-octene to n-nonanal with rhodium-BIPHEPHOS catalysis. Journal of Molecular Catalysis A Chemical, 2003, 206(1-2): 179–184

DOI

38
Vogl C, Paetzold E, Fischer C, Kragl U. Highly selective hydroformylation of internal and terminal olefins to terminal aldehydes using a rhodium-BIPHEPHOS-catalyst system. Journal of Molecular Catalysis A Chemical, 2005, 232(1-2): 41–44

DOI

39
Kiedorf G, Hoang D M, Müller A, Jörke A, Markert J, Arellano-Garcia H, Seidel-Morgenstern A, Hamel C. Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst. Chemical Engineering Science, 2014, 115: 31–48

DOI

40
Cuny G D, Buchwald S L. Practical, high-yield, regioselective, rhodium-catalyzed hydroformylation of functionalized alpha-olefins. Journal of the American Chemical Society, 1993, 115(5): 2066–2068

DOI

41
Behr A, Obst D, Turkowski B. Isomerizing hydroformylation of trans-4-octene to n-nonanal in multiphase systems: Acceleration effect of propylene carbonate. Journal of Molecular Catalysis A Chemical, 2005, 226(2): 215–219

DOI

42
Moasser B, Gladfelter W L, Roe D C. Mechanistic aspects of a highly regioselective catalytic alkene hydroformylation using a rhodium chelating bis(phosphite) complex. Organometallics, 1995, 14(8): 3832–3838

DOI

43
Sakai N, Mano S, Nozaki K, Takaya H. Highly enantioselective hydroformylation of olefins catalyzed by new phosphine phosphite-rhodium (I) complexes. Journal of the American Chemical Society, 1993, 115(15): 7033–7034

DOI

44
Carbó J J, Maseras F, Bo C, van Leeuwen P W N M. Unraveling the origin of regioselectivity in rhodium diphosphine catalyzed hydroformylation. A DFT QM/MM study. Journal of the American Chemical Society, 2001, 123(31): 7630–7637

DOI

45
Kranenburg M, van der Burgt Y E M, Kamer P C J, van Leeuwen P W N M, Goubitz K, Fraanje J. New diphosphine ligands based on heterocyclic aromatics inducing very high regioselectivity in rhodium-catalyzed hydroformylation: Effect of the bite angle. Organometallics, 1995, 14(6): 3081–3089

DOI

46
van der Veen L A, Boele M D K, Bregman F R, Kamer P C J, van Leeuwen P W N M, Goubitz K, Fraanje J, Schenk H, Bo C. Electronic effect on rhodium diphosphine catalyzed hydroformylation: The bite angle effect reconsidered. Journal of the American Chemical Society, 1998, 120(45): 11616–11626

DOI

47
Hillebrand S, Bruckmann J, Krüger C, Haenel M W. Bidentate phosphines of heteroarenes: 9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene. Tetrahedron Letters, 1995, 36(1): 75–78

DOI

48
Klein H, Jackstell R, Wiese K D, Borgmann C, Beller M. Highly selective catalyst systems for the hydroformylation of internal olefins to linear aldehydes. Angewandte Chemie International Edition, 2001, 40(18): 3408–3411

DOI

49
Cai C, Yu S, Cao B, Zhang X. New tetraphosphorus ligands for Highly linear selective hydroformylation of allyl and vinyl derivatives. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(32): 9992–9998

DOI

50
Li S, Huang K, Zhang J, Wu W, Zhang X. Rhodium-catalyzed highly regioselective hydroaminomethylation of styrenes with tetraphosphorus ligands. Organic Letters, 2013, 15(12): 3078–3081

DOI

51
Yu S, Chie Y, Guan Z, Zou Y, Li W, Zhang X. Highly regioselective hydroformylation of styrene and its derivatives catalyzed by Rh complex with tetraphosphorus ligands. Organic Letters, 2008, 11(1): 241–244

DOI

52
Yu S, Chie Y, Guan Z, Zhang X. Highly regioselective isomerization-hydroformylation of internal olefins to linear aldehyde using Rh complexes with tetraphosphorus ligands. Organic Letters, 2008, 10(16): 3469–3472

DOI

53
Hemminger O, Marteel A, Mason M R, Davies J A, Tadd A R, Abraham M A. Hydroformylation of 1-hexene in supercritical carbon dioxide using a heterogeneous rhodium catalyst. 3. Evaluation of solvent effects. Green Chemistry, 2002, 4(5): 507–512

DOI

54
Janssen M, Wilting J, Müller C, Vogt D. Continuous Rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angewandte Chemie International Edition, 2010, 49(42): 7738–7741

DOI

55
Kunene T E, Webb P B, Cole-Hamilton D J. Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chemistry, 2011, 13(6): 1476–1481

DOI

56
Cole-Hamilton D J. Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science, 2003, 299(5613): 1702–1706

DOI

57
Zhou W, He D. A facile method for promoting activities of ordered mesoporous silica-anchored Rh-P complex catalysts in 1-octene hydroformylation. Green Chemistry, 2009, 11(8): 1146–1154

DOI

58
Zhou W, He D. Anchoring RhCl(CO)(PPh3)2 to-PrPPh2 modified MCM-41 as effective catalyst for 1-octene hydroformylation. Catalysis Letters, 2009, 127(3-4): 437–443

DOI

59
Zhou W, He D. Lengthening alkyl spacers to increase SBA-15-anchored Rh-P complex activities in 1-octene hydroformylation. Chemical Communications, 2008, 44(44): 5839–5841

DOI

60
Marras F, Wang J, Coppens M O, Reek J N H. Ordered mesoporous materials as solid supports for rhodium-diphosphine catalysts with remarkable hydroformylation activity. Chemical Communications, 2010, 46(35): 6587–6589

DOI

61
Marras F, Kluwer A M, Siekierzycka J R, Vozza A, Brouwer A M, Reek J N H. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: Towards rational catalyst immobilization. Angewandte Chemie International Edition, 2010, 49(32): 5480–5484

DOI

62
Bae J A, Song K C, Jeon J K, Ko Y S, Park Y K, Yim J H. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation. Microporous and Mesoporous Materials, 2009, 123(1-3): 289–297

DOI

63
Abu-Reziq R, Alper H, Wang D, Post M. Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts. Journal of the American Chemical Society, 2006, 128(15): 5279–5282

DOI

64
Srivastava V K, Sharma S K, Shukla R S, Jasra R V. Rhodium metal complex and hydrotalcite based environmentally friendly catalyst system for the selective synthesis of C8-aldehydes from propylene. Industrial & Engineering Chemistry Research, 2008, 47(11): 3795–3803

DOI

65
Sharma S K, Parikh P A, Jasra R V. Hydroformylation of alkenes using heterogeneous catalyst prepared by intercalation of HRh(CO)(TPPTS)3 complex in hydrotalcite. Journal of Molecular Catalysis A Chemical, 2010, 316(1-2): 153–162

DOI

66
Jiang M, Ding Y, Yan L, Song X, Lin R. Rh catalysts supported on knitting aryl network polymers for the hydroformylation of higher olefins. Chinese Journal of Catalysis, 2014, 35(9): 1456–1464

DOI

67
Wang T, Wang W, Lyu Y, Xiong K, Li C, Zhang H, Zhan Z, Jiang Z, Ding Y. Porous Rh/BINAP polymers as efficient heterogeneous catalysts for asymmetric hydroformylation of styrene: Enhanced enantioselectivity realized by flexible chiral nanopockets. Chinese Journal of Catalysis, 2017, 38(4): 691–698

DOI

68
Nozaki K, Shibahara F, Hiyama T. Vapor-phase asymmetric hydroformylation. Chemistry Letters, 2000, 29(6): 694–695

DOI

69
Shibahara F, Nozaki K, Matsuo T, Hiyama T. Asymmetric hydroformylation with highly crosslinked polystyrene-supported (R,S)-BINAPHOS-Rh(I) complexes: The effect of immobilization position. Bioorganic & Medicinal Chemistry Letters, 2002, 12(14): 1825–1827

DOI

70
Shibahara F, Nozaki K, Hiyama T. Solvent-free asymmetric olefin hydroformylation catalyzed by highly cross-linked polystyrene-supported (R,S)-BINAPHOS-Rh(I) complex. Journal of the American Chemical Society, 2003, 125(28): 8555–8560

DOI

71
Kinoshita S, Shibahara F, Nozaki K. Comparison of two preparative methods: A polymer-supported catalyst by metal-complexation with a polymeric ligand or by polymerization of a metal complex. Green Chemistry, 2005, 7: 256–258

DOI

72
Makhubela B C E, Jardine A, Smith G S. Rh(I) complexes supported on a biopolymer as recyclable and selective hydroformylation catalysts. Green Chemistry, 2012, 14(2): 338–347

DOI

73
Jana R, Tunge J A. A homogeneous, recyclable polymer support for Rh (I)-catalyzed CC bond formation. Journal of Organic Chemistry, 2011, 76(20): 8376–8385

DOI

74
Jana R, Tunge J A. A homogeneous, recyclable rhodium(I) catalyst for the hydroarylation of Michael acceptors. Organic Letters, 2009, 11(4): 971–974

DOI

75
Zhu H, Ding Y, Yin H, Yan L, Xiong J, Lu Y, Luo H, Lin L. Supported rhodium and supported aqueous-phase catalyst, and supported rhodium catalyst modified with water-soluble TPPTS ligands. Applied Catalysis A, General, 2003, 245(1): 111–117

DOI

76
Zhu H J, Ding Y J, Yan L, Xiong J, Li X, Zhang L, Lin P, Huang S, Lin L. A novel family of catalysts comprising a supported metal and a supported aqueous-phase catalyst. Chinese Journal of Catalysis, 2003, 24: 81–82

77
Mukhopadhyay K, Chaudhari R V. Heterogenized HRh(CO)(PPh3)3 on zeolite Y using phosphotungstic acid as tethering agent: A novel hydroformylation catalyst. Journal of Catalysis, 2003, 213(1): 73–77

DOI

78
Han D, Li X, Zhang H, Liu Z, Hu G, Li C. Asymmetric hydroformylation of olefins catalyzed by rhodium nanoparticles chirally stabilized with (R)-BINAP ligand. Journal of Molecular Catalysis A Chemical, 2008, 283(1-2): 15–22

DOI

79
Han D, Li X, Zhang H, Liu Z, Li J, Li C. Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts. Journal of Catalysis, 2006, 243(2): 318–328

DOI

80
Shylesh S, Hanna D, Mlinar A, Kǒng X, Reimer J A, Bell A. In situ formation of Wilkinson-type hydroformylation catalysts: Insights into the structure, stability, and kinetics of triphenylphosphine-and xantphos-modified Rh/SiO2. ACS Catalysis, 2013, 3(3): 348–357

DOI

81
Yan L, Ding Y, Zhu H, Xiong J, Wang T, Pan Z, Lin L. Ligand modified real heterogeneous catalysts for fixed-bed hydroformylation of propylene. Journal of Molecular Catalysis A Chemical, 2005, 234(1-2): 1–7

DOI

82
Yan L, Ding Y, Zhu H, Yin H, Jiao G, Zhao D, Lin L. Continuous fixed-bed gas-phase hydroformylation over PPh3-modified mesostructured cellular foam-supported Rh catalyst. Chinese Journal of Catalysis, 2006, 27(1): 1–3

DOI

83
Yan L, Ding Y, Lin L, Zhu H, Yin H, Li X, Lu Y. In situ formation of HRh(CO)2(PPh3)2 active species on the surface of a SBA-15 supported heterogeneous catalyst and the effect of support pore size on the hydroformylation of propene. Journal of Molecular Catalysis A Chemical, 2009, 300(1-2): 116–120

DOI

84
Yan L, Ding Y, Liu J, Zhu H, Lin L. Influence of phosphine concentration on propylene hydroformylation over the PPh3-Rh/SiO2 catalyst. Chinese Journal of Catalysis, 2011, 32(1-2): 31–35

DOI

85
Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Hydroformylation of internal olefins to linear aldehydes over a phosphite ligand modified Rh/SiO2 catalyst. Journal of Natural Gas Chemistry, 2008, 17: 351–354

DOI

86
Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Phosphorus ligand modified Rh/SiO2 catalyst for hydroformylation of methyl-3-pentenoate. Chinese Journal of Catalysis, 2008, 29(12): 1193–1195

DOI

87
Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Phosphite ligand modified supported rhodium catalyst for hydroformylation of internal olefins to linear aldehydes. Chemical Research in Chinese Universities, 2009, 25: 738–739

88
Li X, Ding Y, Jiao G, Li J, Lin R, Gong L, Yan L, Zhu H. A new concept of tethered ligand-modified Rh/SiO2 catalyst for hydroformylation with high stability. Applied Catalysis A, General, 2009, 353(2): 266–270

DOI

89
Liu J, Yan L, Ding Y, Jiang M, Dong W, Song X, Liu T, Zhu H. Promoting effect of Al on tethered ligand-modified Rh/SiO2 catalysts for ethylene hydroformylation. Applied Catalysis A, General, 2015, 492: 127–132

DOI

90
Liu J, Yan L, Jiang M, Li C, Ding Y. Effect of lengthening alkyl spacer on hydroformylation performance of tethered-phosphine modified Rh/SiO2 catalyst. Chinese Journal of Catalysis, 2016, 37(2): 268–272

DOI

91
Arya P, Panda G, Rao N V, Alper H, Bourque S C, Manzer L E. Solid-phase catalysis: A biomimetic approach toward ligands on dendritic arms to explore recyclable hydroformylation reactions. Journal of the American Chemical Society, 2001, 123(12): 2889–2890

DOI

92
Adint T T, Landis C R. Immobilized bisdiazaphospholane catalysts for asymmetric hydroformylation. Journal of the American Chemical Society, 2014, 136(22): 7943–7953

DOI

93
Nowotny M, Maschmeyer T, Johnson B F G, Lahuerta P, Thomas J M, Davies J E. Heterogeneous dinuclear rhodium(II) hydroformylation catalysts-performance evaluation and silsesquioxane-based chemical modeling. Angewandte Chemie International Edition, 2001, 40(5): 955–958

DOI

94
Sun Q, Dai Z, Liu X, Sheng N, Deng F, Meng X, Xiao F. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. Journal of the American Chemical Society, 2015, 137(15): 5204–5209

DOI

95
Sun Q, Jiang M, Shen Z, Jin Y, Pan S, Wang L, Meng X, Chen W, Ding Y, Li J, Xiao F. Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chemical Communications, 2014, 50(80): 11844–11847

DOI

96
Zhou Y B, Li C Y, Lin M, Ding Y, Zhan Z. A polymer-bound monodentate-P-ligated palladium complex as a recyclable catalyst for the Suzuki-Miyaura coupling reaction of aryl chlorides. Advanced Synthesis & Catalysis, 2015, 357(11): 2503–2508

DOI

97
Jiang M, Yan L, Ding Y, Sun Q, Liu J, Zhu H, Lin R, Xiao F, Jiang Z, Liu J. Ultrastable 3V-PPh3 polymers supported single Rh sites for fixed-bed hydroformylation of olefins. Journal of Molecular Catalysis A Chemical, 2015, 404: 211–217

DOI

98
Jiang M, Yan L, Sun X, Lin R, Song X, Jiang Z, Ding Y. Effect of different synthetic routes on the performance of propylene hydroformylation over 3V-PPh3 polymer supported Rh catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(1): 223–234

DOI

99
Li C, Xiong K, Yan L, Jiang M, Song X, Wang T, Chen X, Zhan Z, Ding Y. Designing highly efficient Rh/CPOL-bp&PPh3 heterogenous catalysts for hydroformylation of internal and terminal olefins. Catalysis Science & Technology, 2016, 6(7): 2143–2149

DOI

100
Kohlpaintner C W, Fischer R W, Cornils B. Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process. Applied Catalysis A, General, 2001, 221(1-2): 219–225

DOI

101
Li C, Yan L, Lu L, Xiong K, Wang W, Jiang M, Liu J, Song X, Zhan Z, Jiang Z, Ding Y. Single atom dispersed Rh-biphephos&PPh3@ porous organic copolymers: Highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chemistry, 2016, 18(10): 2995–3005

DOI

Outlines

/