A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts

Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding

PDF(465 KB)
PDF(465 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 113-123. DOI: 10.1007/s11705-017-1672-9
REVIEW ARTICLE
REVIEW ARTICLE

A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts

Author information +
History +

Abstract

Hydroformylation has been widely used in industry to manufacture high value-added aldehydes and alcohols, and is considered as the largest homogenously catalyzed process in industry. However, this process often suffers from complicated operation and the difficulty in catalyst recycling. It is highly desirable to develop a heterogeneous catalyst that enables the catalyst recovery without sacrificing the activity and selectivity. There are two strategies to afford such a catalyst for the hydrofromylation: immobilized catalysts on solid support and porous organic ligand (POL)-supported catalysts. In the latter, high concentration of phosphine ligands in the catalyst framework is favorable for the high dispersion of rhodium species and the formation of Rh-P multiple bonds, which endow the catalysts with high activity and stability respectively. Besides, the high linear regioselectivity could be achieved through the copolymerization of vinyl functionalized bidentate ligand (vinyl biphephos) and monodentate ligand (3vPPh3) into the catalyst framework. The newly-emerging POL-supported catalysts have great perspectives in the industrial hydroformylation.

Graphical abstract

Keywords

hydroformylation / porous organic ligand (POL)-supported catalysts / heterogeneous catalysis / high stability / immobilization catalysts

Cite this article

Download citation ▾
Cunyao Li, Wenlong Wang, Li Yan, Yunjie Ding. A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts. Front. Chem. Sci. Eng., 2018, 12(1): 113‒123 https://doi.org/10.1007/s11705-017-1672-9

References

[1]
van Leeuwen P W N M, Claver C. Rhodium Catalyzed Hydroformylation. Berlin: Springer-Heidelberg, 2008, Chapter 1: 1–13
[2]
Franke R, Selent D, Börner A. Applied hydroformylation. Chemical Reviews, 2012, 112(11): 5675–5732
CrossRef Google scholar
[3]
Hebrard F, Kalck P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chemical Reviews, 2009, 109(9): 4272–4282
CrossRef Google scholar
[4]
Neves Â C B, Calvete M J F, Pinho e Melo T M V D, Pereira M M. Immobilized catalysts for hydroformylation reactions: A versatile tool for aldehyde synthesis. European Journal of Organic Chemistry, 2012, 2012: 6309–6320
[5]
Fleischer I, Wu L, Profir I, Jackstell R, Franke R, Beller M. Towards the development of a selective ruthenium-catalyzed hydroformylation of olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(32): 10589–10594
CrossRef Google scholar
[6]
Fang X, Zhang M, Jackstell R, Beller M. Selective palladium-catalyzed hydroformylation of alkynes to α,β-unsaturated aldehydes. Angewandte Chemie International Edition, 2013, 52(17): 4645–4649
CrossRef Google scholar
[7]
Kubis C, Baumann W, Barsch E, Selent D, Sawall M, Ludwig R, Neymeyr K, Hess D, Franke R, Börner A. Investigation into the equilibrium of iridium catalysts for the hydroformylation of olefins by combining in situ high-pressure FTIR and NMR spectroscopy. ACS Catalysis, 2014, 4(7): 2097–2108
CrossRef Google scholar
[8]
Janssen M, Wilting J, Müller C, Vogt D. Continuous rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angewandte Chemie International Edition, 2010, 49(42): 7738–7741
CrossRef Google scholar
[9]
Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by Employing a cooperative ligand system. Angewandte Chemie International Edition, 2012, 51(9): 2178–2182
CrossRef Google scholar
[10]
Klähn M, Garland M V. On the mechanism of the catalytic binuclear elimination reaction in hydroformylation systems. ACS Catalysis, 2015, 5(4): 2301–2316
CrossRef Google scholar
[11]
Cornils B, Herrmann W A, Rasch M. Otto Roelen, pioneer in industrial homogeneous catalysis. Angewandte Chemie International Edition in English, 1994, 33(21): 2144–2163
CrossRef Google scholar
[12]
Roelen O. DE Patent, 849548, 1938
[13]
Roelen O. US Patent, 2327066, 1943
[14]
Haumann M, Jakuttis M, Franke R, Schönweiz A, Wasserscheid P. Continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts. ChemCatChem, 2011, 3(11): 1822–1827
CrossRef Google scholar
[15]
Jacobs I, de Bruin B, Reek J N H. Comparison of the full catalytic cycle of hydroformylation mediated by mono- and bis-ligated triphenylphosphine-rhodium complexes by using DFT calculations. ChemCatChem, 2015, 7(11): 1708–1718
CrossRef Google scholar
[16]
Brunsch Y, Behr A. Temperature-controlled catalyst recycling in homogeneous transition-metal catalysis: Minimization of catalyst leaching. Angewandte Chemie International Edition, 2013, 52(5): 1586–1589
CrossRef Google scholar
[17]
Gellrich U, Seiche W, Keller M, Breit B. Mechanistic insights into a supramolecular self-assembling catalyst system: Evidence for hydrogen bonding during rhodium-catalyzed hydroformylation. Angewandte Chemie International Edition, 2012, 51(44): 11033–11038
CrossRef Google scholar
[18]
Wu L, Fleischer I, Jackstell R, Profir I, Franke R, Beller M. Ruthenium-catalyzed hydroformylation/reduction of olefins to alcohols: Extending the scope to internal alkenes. Journal of the American Chemical Society, 2013, 135(38): 14306–14312
CrossRef Google scholar
[19]
Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by employing a cooperative ligand system. Angewandte Chemie International Edition, 2012, 51(9): 2178–2182
CrossRef Google scholar
[20]
Neubert P, Fuchs S, Behr A. Hydroformylation of piperylene and efficient catalyst recycling in propylene carbonate. Green Chemistry, 2015, 17(7): 4045–4052
CrossRef Google scholar
[21]
Dydio P, Detz R J, de Bruin B, Reek J N H. Beyond classical reactivity patterns: Hydroformylation of vinyl and allyl arenes to valuable β-and γ-aldehyde intermediates using supramolecular catalysis. Journal of the American Chemical Society, 2014, 136(23): 8418–8429
CrossRef Google scholar
[22]
Takahashi K, Yamashita M, Nozaki K. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst. Journal of the American Chemical Society, 2012, 134(45): 18746–18757
CrossRef Google scholar
[23]
Dong K, Fang X, Jackstell R, Beller M. A novel rhodium-catalyzed domino-hydroformylation-reaction for the synthesis of sulphonamides. Chemical Communications, 2015, 51(24): 5059–5062
CrossRef Google scholar
[24]
Fleischer I, Dyballa K M, Jennerjahn R, Jackstell R, Franke R, Spannenberg A, Beller M. From olefins to alcohols: Efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence. Angewandte Chemie International Edition, 2013, 52(10): 2949–2953
CrossRef Google scholar
[25]
Takahashi K, Yamashita M, Tanaka Y, Nozaki K. Ruthenium/C5Me5/bisphosphine-or bisphosphite-based catalysts for normal-selective hydroformylation. Angewandte Chemie International Edition, 2012, 51(18): 4383–4387
CrossRef Google scholar
[26]
Dydio P, Dzik W I, Lutz M, de Bruin B, Reek J N H. Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes. Angewandte Chemie International Edition, 2011, 50(2): 396–400
CrossRef Google scholar
[27]
Jia X, Wang Z, Xia C, Ding K. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(48): 15288–15295
CrossRef Google scholar
[28]
Agbossou F, Carpentier J F, Mortreux A. Asymmetric hydroformylation. Chemical Reviews, 1995, 95(7): 2485–2506
CrossRef Google scholar
[29]
Pospech J, Fleischer I, Franke R, Buchholz S, Beller M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angewandte Chemie International Edition, 2013, 52(10): 2852–2872
CrossRef Google scholar
[30]
Brown C K, Wilkinson G. Homogeneous hydroformylation of alkenes with hydridocarbonyltris-(triphenylphosphine) rhodium (I) as catalyst. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1970, 2753–2764
[31]
Evans D, Osborn J A, Wilkinson G. Hydroformylation of alkenes by use of rhodium complex catalysts. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968, 3133–3142
[32]
Herrmann W A, Schmid R, Kohlpaintner C W, Priermeier T. Structure and metal coordination of the diphosphine 2,2′-bis((diphenylphosphino)methyl)-1,1′-binaphthyl (NAPHOS). Organometallics, 1995, 14(4): 1961–1968
CrossRef Google scholar
[33]
Casey C P, Paulsen E L, Beuttenmueller E W, Proft B R, Petrovich L M, Matter B A, Powell D R. Electron withdrawing substituents on equatorial and apical phosphines have opposite effects on the regioselectivity of rhodium catalyzed hydroformylation. Journal of the American Chemical Society, 1997, 119(49): 11817–11825
CrossRef Google scholar
[34]
Casey C P, Whiteker G T, Melville M G, Petrovich L M, Gavney J A Jr, Powell D R. Diphosphines with natural bite angles near 120° increase selectivity for n-aldehyde formation in rhodium-catalyzed hydroformylation. Journal of the American Chemical Society, 1992, 114(14): 5535–5543
CrossRef Google scholar
[35]
Herrmann W A, Kohlpaintner C W, Herdtweck E, Kiprof P. Structure and metal coordination of the diphosphane 2,2′-bis((diphenylphosphino) methyl)-1,1′-biphenyl (“BISBI”). Inorganic Chemistry, 1991, 30(22): 4271–4275
CrossRef Google scholar
[36]
Billig E, Abatjoglou A G, Bryant D R. (a) EU Patent, 213639, 1987; (b) US Patent, 4748261, 1988
[37]
Behr A, Obst D, Schulte C, Schosser T. Highly selective tandem isomerization-hydroformylation reaction of trans-4-octene to n-nonanal with rhodium-BIPHEPHOS catalysis. Journal of Molecular Catalysis A Chemical, 2003, 206(1-2): 179–184
CrossRef Google scholar
[38]
Vogl C, Paetzold E, Fischer C, Kragl U. Highly selective hydroformylation of internal and terminal olefins to terminal aldehydes using a rhodium-BIPHEPHOS-catalyst system. Journal of Molecular Catalysis A Chemical, 2005, 232(1-2): 41–44
CrossRef Google scholar
[39]
Kiedorf G, Hoang D M, Müller A, Jörke A, Markert J, Arellano-Garcia H, Seidel-Morgenstern A, Hamel C. Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst. Chemical Engineering Science, 2014, 115: 31–48
CrossRef Google scholar
[40]
Cuny G D, Buchwald S L. Practical, high-yield, regioselective, rhodium-catalyzed hydroformylation of functionalized alpha-olefins. Journal of the American Chemical Society, 1993, 115(5): 2066–2068
CrossRef Google scholar
[41]
Behr A, Obst D, Turkowski B. Isomerizing hydroformylation of trans-4-octene to n-nonanal in multiphase systems: Acceleration effect of propylene carbonate. Journal of Molecular Catalysis A Chemical, 2005, 226(2): 215–219
CrossRef Google scholar
[42]
Moasser B, Gladfelter W L, Roe D C. Mechanistic aspects of a highly regioselective catalytic alkene hydroformylation using a rhodium chelating bis(phosphite) complex. Organometallics, 1995, 14(8): 3832–3838
CrossRef Google scholar
[43]
Sakai N, Mano S, Nozaki K, Takaya H. Highly enantioselective hydroformylation of olefins catalyzed by new phosphine phosphite-rhodium (I) complexes. Journal of the American Chemical Society, 1993, 115(15): 7033–7034
CrossRef Google scholar
[44]
Carbó J J, Maseras F, Bo C, van Leeuwen P W N M. Unraveling the origin of regioselectivity in rhodium diphosphine catalyzed hydroformylation. A DFT QM/MM study. Journal of the American Chemical Society, 2001, 123(31): 7630–7637
CrossRef Google scholar
[45]
Kranenburg M, van der Burgt Y E M, Kamer P C J, van Leeuwen P W N M, Goubitz K, Fraanje J. New diphosphine ligands based on heterocyclic aromatics inducing very high regioselectivity in rhodium-catalyzed hydroformylation: Effect of the bite angle. Organometallics, 1995, 14(6): 3081–3089
CrossRef Google scholar
[46]
van der Veen L A, Boele M D K, Bregman F R, Kamer P C J, van Leeuwen P W N M, Goubitz K, Fraanje J, Schenk H, Bo C. Electronic effect on rhodium diphosphine catalyzed hydroformylation: The bite angle effect reconsidered. Journal of the American Chemical Society, 1998, 120(45): 11616–11626
CrossRef Google scholar
[47]
Hillebrand S, Bruckmann J, Krüger C, Haenel M W. Bidentate phosphines of heteroarenes: 9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene. Tetrahedron Letters, 1995, 36(1): 75–78
CrossRef Google scholar
[48]
Klein H, Jackstell R, Wiese K D, Borgmann C, Beller M. Highly selective catalyst systems for the hydroformylation of internal olefins to linear aldehydes. Angewandte Chemie International Edition, 2001, 40(18): 3408–3411
CrossRef Google scholar
[49]
Cai C, Yu S, Cao B, Zhang X. New tetraphosphorus ligands for Highly linear selective hydroformylation of allyl and vinyl derivatives. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(32): 9992–9998
CrossRef Google scholar
[50]
Li S, Huang K, Zhang J, Wu W, Zhang X. Rhodium-catalyzed highly regioselective hydroaminomethylation of styrenes with tetraphosphorus ligands. Organic Letters, 2013, 15(12): 3078–3081
CrossRef Google scholar
[51]
Yu S, Chie Y, Guan Z, Zou Y, Li W, Zhang X. Highly regioselective hydroformylation of styrene and its derivatives catalyzed by Rh complex with tetraphosphorus ligands. Organic Letters, 2008, 11(1): 241–244
CrossRef Google scholar
[52]
Yu S, Chie Y, Guan Z, Zhang X. Highly regioselective isomerization-hydroformylation of internal olefins to linear aldehyde using Rh complexes with tetraphosphorus ligands. Organic Letters, 2008, 10(16): 3469–3472
CrossRef Google scholar
[53]
Hemminger O, Marteel A, Mason M R, Davies J A, Tadd A R, Abraham M A. Hydroformylation of 1-hexene in supercritical carbon dioxide using a heterogeneous rhodium catalyst. 3. Evaluation of solvent effects. Green Chemistry, 2002, 4(5): 507–512
CrossRef Google scholar
[54]
Janssen M, Wilting J, Müller C, Vogt D. Continuous Rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angewandte Chemie International Edition, 2010, 49(42): 7738–7741
CrossRef Google scholar
[55]
Kunene T E, Webb P B, Cole-Hamilton D J. Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chemistry, 2011, 13(6): 1476–1481
CrossRef Google scholar
[56]
Cole-Hamilton D J. Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science, 2003, 299(5613): 1702–1706
CrossRef Google scholar
[57]
Zhou W, He D. A facile method for promoting activities of ordered mesoporous silica-anchored Rh-P complex catalysts in 1-octene hydroformylation. Green Chemistry, 2009, 11(8): 1146–1154
CrossRef Google scholar
[58]
Zhou W, He D. Anchoring RhCl(CO)(PPh3)2 to-PrPPh2 modified MCM-41 as effective catalyst for 1-octene hydroformylation. Catalysis Letters, 2009, 127(3-4): 437–443
CrossRef Google scholar
[59]
Zhou W, He D. Lengthening alkyl spacers to increase SBA-15-anchored Rh-P complex activities in 1-octene hydroformylation. Chemical Communications, 2008, 44(44): 5839–5841
CrossRef Google scholar
[60]
Marras F, Wang J, Coppens M O, Reek J N H. Ordered mesoporous materials as solid supports for rhodium-diphosphine catalysts with remarkable hydroformylation activity. Chemical Communications, 2010, 46(35): 6587–6589
CrossRef Google scholar
[61]
Marras F, Kluwer A M, Siekierzycka J R, Vozza A, Brouwer A M, Reek J N H. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: Towards rational catalyst immobilization. Angewandte Chemie International Edition, 2010, 49(32): 5480–5484
CrossRef Google scholar
[62]
Bae J A, Song K C, Jeon J K, Ko Y S, Park Y K, Yim J H. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation. Microporous and Mesoporous Materials, 2009, 123(1-3): 289–297
CrossRef Google scholar
[63]
Abu-Reziq R, Alper H, Wang D, Post M. Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts. Journal of the American Chemical Society, 2006, 128(15): 5279–5282
CrossRef Google scholar
[64]
Srivastava V K, Sharma S K, Shukla R S, Jasra R V. Rhodium metal complex and hydrotalcite based environmentally friendly catalyst system for the selective synthesis of C8-aldehydes from propylene. Industrial & Engineering Chemistry Research, 2008, 47(11): 3795–3803
CrossRef Google scholar
[65]
Sharma S K, Parikh P A, Jasra R V. Hydroformylation of alkenes using heterogeneous catalyst prepared by intercalation of HRh(CO)(TPPTS)3 complex in hydrotalcite. Journal of Molecular Catalysis A Chemical, 2010, 316(1-2): 153–162
CrossRef Google scholar
[66]
Jiang M, Ding Y, Yan L, Song X, Lin R. Rh catalysts supported on knitting aryl network polymers for the hydroformylation of higher olefins. Chinese Journal of Catalysis, 2014, 35(9): 1456–1464
CrossRef Google scholar
[67]
Wang T, Wang W, Lyu Y, Xiong K, Li C, Zhang H, Zhan Z, Jiang Z, Ding Y. Porous Rh/BINAP polymers as efficient heterogeneous catalysts for asymmetric hydroformylation of styrene: Enhanced enantioselectivity realized by flexible chiral nanopockets. Chinese Journal of Catalysis, 2017, 38(4): 691–698
CrossRef Google scholar
[68]
Nozaki K, Shibahara F, Hiyama T. Vapor-phase asymmetric hydroformylation. Chemistry Letters, 2000, 29(6): 694–695
CrossRef Google scholar
[69]
Shibahara F, Nozaki K, Matsuo T, Hiyama T. Asymmetric hydroformylation with highly crosslinked polystyrene-supported (R,S)-BINAPHOS-Rh(I) complexes: The effect of immobilization position. Bioorganic & Medicinal Chemistry Letters, 2002, 12(14): 1825–1827
CrossRef Google scholar
[70]
Shibahara F, Nozaki K, Hiyama T. Solvent-free asymmetric olefin hydroformylation catalyzed by highly cross-linked polystyrene-supported (R,S)-BINAPHOS-Rh(I) complex. Journal of the American Chemical Society, 2003, 125(28): 8555–8560
CrossRef Google scholar
[71]
Kinoshita S, Shibahara F, Nozaki K. Comparison of two preparative methods: A polymer-supported catalyst by metal-complexation with a polymeric ligand or by polymerization of a metal complex. Green Chemistry, 2005, 7: 256–258
CrossRef Google scholar
[72]
Makhubela B C E, Jardine A, Smith G S. Rh(I) complexes supported on a biopolymer as recyclable and selective hydroformylation catalysts. Green Chemistry, 2012, 14(2): 338–347
CrossRef Google scholar
[73]
Jana R, Tunge J A. A homogeneous, recyclable polymer support for Rh (I)-catalyzed CC bond formation. Journal of Organic Chemistry, 2011, 76(20): 8376–8385
CrossRef Google scholar
[74]
Jana R, Tunge J A. A homogeneous, recyclable rhodium(I) catalyst for the hydroarylation of Michael acceptors. Organic Letters, 2009, 11(4): 971–974
CrossRef Google scholar
[75]
Zhu H, Ding Y, Yin H, Yan L, Xiong J, Lu Y, Luo H, Lin L. Supported rhodium and supported aqueous-phase catalyst, and supported rhodium catalyst modified with water-soluble TPPTS ligands. Applied Catalysis A, General, 2003, 245(1): 111–117
CrossRef Google scholar
[76]
Zhu H J, Ding Y J, Yan L, Xiong J, Li X, Zhang L, Lin P, Huang S, Lin L. A novel family of catalysts comprising a supported metal and a supported aqueous-phase catalyst. Chinese Journal of Catalysis, 2003, 24: 81–82
[77]
Mukhopadhyay K, Chaudhari R V. Heterogenized HRh(CO)(PPh3)3 on zeolite Y using phosphotungstic acid as tethering agent: A novel hydroformylation catalyst. Journal of Catalysis, 2003, 213(1): 73–77
CrossRef Google scholar
[78]
Han D, Li X, Zhang H, Liu Z, Hu G, Li C. Asymmetric hydroformylation of olefins catalyzed by rhodium nanoparticles chirally stabilized with (R)-BINAP ligand. Journal of Molecular Catalysis A Chemical, 2008, 283(1-2): 15–22
CrossRef Google scholar
[79]
Han D, Li X, Zhang H, Liu Z, Li J, Li C. Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts. Journal of Catalysis, 2006, 243(2): 318–328
CrossRef Google scholar
[80]
Shylesh S, Hanna D, Mlinar A, Kǒng X, Reimer J A, Bell A. In situ formation of Wilkinson-type hydroformylation catalysts: Insights into the structure, stability, and kinetics of triphenylphosphine-and xantphos-modified Rh/SiO2. ACS Catalysis, 2013, 3(3): 348–357
CrossRef Google scholar
[81]
Yan L, Ding Y, Zhu H, Xiong J, Wang T, Pan Z, Lin L. Ligand modified real heterogeneous catalysts for fixed-bed hydroformylation of propylene. Journal of Molecular Catalysis A Chemical, 2005, 234(1-2): 1–7
CrossRef Google scholar
[82]
Yan L, Ding Y, Zhu H, Yin H, Jiao G, Zhao D, Lin L. Continuous fixed-bed gas-phase hydroformylation over PPh3-modified mesostructured cellular foam-supported Rh catalyst. Chinese Journal of Catalysis, 2006, 27(1): 1–3
CrossRef Google scholar
[83]
Yan L, Ding Y, Lin L, Zhu H, Yin H, Li X, Lu Y. In situ formation of HRh(CO)2(PPh3)2 active species on the surface of a SBA-15 supported heterogeneous catalyst and the effect of support pore size on the hydroformylation of propene. Journal of Molecular Catalysis A Chemical, 2009, 300(1-2): 116–120
CrossRef Google scholar
[84]
Yan L, Ding Y, Liu J, Zhu H, Lin L. Influence of phosphine concentration on propylene hydroformylation over the PPh3-Rh/SiO2 catalyst. Chinese Journal of Catalysis, 2011, 32(1-2): 31–35
CrossRef Google scholar
[85]
Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Hydroformylation of internal olefins to linear aldehydes over a phosphite ligand modified Rh/SiO2 catalyst. Journal of Natural Gas Chemistry, 2008, 17: 351–354
CrossRef Google scholar
[86]
Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Phosphorus ligand modified Rh/SiO2 catalyst for hydroformylation of methyl-3-pentenoate. Chinese Journal of Catalysis, 2008, 29(12): 1193–1195
CrossRef Google scholar
[87]
Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Phosphite ligand modified supported rhodium catalyst for hydroformylation of internal olefins to linear aldehydes. Chemical Research in Chinese Universities, 2009, 25: 738–739
[88]
Li X, Ding Y, Jiao G, Li J, Lin R, Gong L, Yan L, Zhu H. A new concept of tethered ligand-modified Rh/SiO2 catalyst for hydroformylation with high stability. Applied Catalysis A, General, 2009, 353(2): 266–270
CrossRef Google scholar
[89]
Liu J, Yan L, Ding Y, Jiang M, Dong W, Song X, Liu T, Zhu H. Promoting effect of Al on tethered ligand-modified Rh/SiO2 catalysts for ethylene hydroformylation. Applied Catalysis A, General, 2015, 492: 127–132
CrossRef Google scholar
[90]
Liu J, Yan L, Jiang M, Li C, Ding Y. Effect of lengthening alkyl spacer on hydroformylation performance of tethered-phosphine modified Rh/SiO2 catalyst. Chinese Journal of Catalysis, 2016, 37(2): 268–272
CrossRef Google scholar
[91]
Arya P, Panda G, Rao N V, Alper H, Bourque S C, Manzer L E. Solid-phase catalysis: A biomimetic approach toward ligands on dendritic arms to explore recyclable hydroformylation reactions. Journal of the American Chemical Society, 2001, 123(12): 2889–2890
CrossRef Google scholar
[92]
Adint T T, Landis C R. Immobilized bisdiazaphospholane catalysts for asymmetric hydroformylation. Journal of the American Chemical Society, 2014, 136(22): 7943–7953
CrossRef Google scholar
[93]
Nowotny M, Maschmeyer T, Johnson B F G, Lahuerta P, Thomas J M, Davies J E. Heterogeneous dinuclear rhodium(II) hydroformylation catalysts-performance evaluation and silsesquioxane-based chemical modeling. Angewandte Chemie International Edition, 2001, 40(5): 955–958
CrossRef Google scholar
[94]
Sun Q, Dai Z, Liu X, Sheng N, Deng F, Meng X, Xiao F. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. Journal of the American Chemical Society, 2015, 137(15): 5204–5209
CrossRef Google scholar
[95]
Sun Q, Jiang M, Shen Z, Jin Y, Pan S, Wang L, Meng X, Chen W, Ding Y, Li J, Xiao F. Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chemical Communications, 2014, 50(80): 11844–11847
CrossRef Google scholar
[96]
Zhou Y B, Li C Y, Lin M, Ding Y, Zhan Z. A polymer-bound monodentate-P-ligated palladium complex as a recyclable catalyst for the Suzuki-Miyaura coupling reaction of aryl chlorides. Advanced Synthesis & Catalysis, 2015, 357(11): 2503–2508
CrossRef Google scholar
[97]
Jiang M, Yan L, Ding Y, Sun Q, Liu J, Zhu H, Lin R, Xiao F, Jiang Z, Liu J. Ultrastable 3V-PPh3 polymers supported single Rh sites for fixed-bed hydroformylation of olefins. Journal of Molecular Catalysis A Chemical, 2015, 404: 211–217
CrossRef Google scholar
[98]
Jiang M, Yan L, Sun X, Lin R, Song X, Jiang Z, Ding Y. Effect of different synthetic routes on the performance of propylene hydroformylation over 3V-PPh3 polymer supported Rh catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(1): 223–234
CrossRef Google scholar
[99]
Li C, Xiong K, Yan L, Jiang M, Song X, Wang T, Chen X, Zhan Z, Ding Y. Designing highly efficient Rh/CPOL-bp&PPh3 heterogenous catalysts for hydroformylation of internal and terminal olefins. Catalysis Science & Technology, 2016, 6(7): 2143–2149
CrossRef Google scholar
[100]
Kohlpaintner C W, Fischer R W, Cornils B. Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process. Applied Catalysis A, General, 2001, 221(1-2): 219–225
CrossRef Google scholar
[101]
Li C, Yan L, Lu L, Xiong K, Wang W, Jiang M, Liu J, Song X, Zhan Z, Jiang Z, Ding Y. Single atom dispersed Rh-biphephos&PPh3@ porous organic copolymers: Highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chemistry, 2016, 18(10): 2995–3005
CrossRef Google scholar

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21273227 and 21403258) and the Strategic Priority Research Program of the Chinese Academy of Science (Grant Nos XDB17020400).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(465 KB)

Accesses

Citations

Detail

Sections
Recommended

/