RESEARCH ARTICLE

Alkali-thermal gasification and hydrogen generation potential of biomass

  • Alexander B. Koven 1 ,
  • Shitang S. Tong 2 ,
  • Ramin R. Farnood 1 ,
  • Charles Q. Jia , 1
Expand
  • 1. Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, M5S-3E5, Canada
  • 2. School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China

Received date: 23 Nov 2016

Accepted date: 26 Apr 2017

Published date: 23 Aug 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Generating hydrogen gas from biomass is one approach to lowering dependencies on fossil fuels for energy and chemical feedstock, as well as reducing greenhouse gas emissions. Using both equilibrium simulations and batch experiments with NaOH as a model alkaline, this study established the technical feasibility of converting various biomasses (e.g., glucose, cellulose, xylan and lignin) into H2-rich gas via catalyst-free, alkali-thermal gasification at moderate temperatures (as low as 300 °C). This process could produce more H2 with less carbon-containing gases in the product than other comparable methods. It was shown that alkali-thermal gasification followsCx HyOz+ 2xNaOH+(xz)H2 O= (2x+y/2z )H2+x Na2 CO 3, with carbonate being the solid product which is different from the one suggested in the literature. Moreover, the concept of hydrogen generation potential (H2-GP)—the maximum amount of H2 that a biomass can yield, was introduced. For a given biomass CxHyOz, the H2-GP would be moles of H2. It was demonstrated experimentally that the H2-GP was achievable by adjusting the amounts of H2O and NaOH, temperature and pressure.

Cite this article

Alexander B. Koven , Shitang S. Tong , Ramin R. Farnood , Charles Q. Jia . Alkali-thermal gasification and hydrogen generation potential of biomass[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(3) : 369 -378 . DOI: 10.1007/s11705-017-1662-y

Acknowledgements

Financial supports from NSERC of Canada in forms of research grant to CQJ and fellowship to ABK, the National Natural Science Foundation of China grants to Shitang S. Tong (Nos. 50574071 and 51174150) and the help of Dr Zhenwei Cui with processing figures are gratefully acknowledged.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-017-1662-y and is accessible for authorized users.
1
Ishida M, Otsuka  K, Takenaka S ,  Yamanaka I . One-step production of CO- and CO2-free hydrogen from biomass. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2005, 80(3): 281–284

DOI

2
EG&G Technical Services. I. In: Fuel Processing Techniques, Fuel Cell Handbook 7th ed. Morgantown: U.S. Department of Energy, 2004, 257–259

3
Balat H, Kırtay  E. Hydrogen from biomass—Present scenario and future prospects. International Journal of Hydrogen Energy, 2010, 35(14): 7416–7426

DOI

4
Kirtay E. Recent advances in production of hydrogen from biomass. Energy Conversion and Management, 2011, 52(4): 1778–1789

DOI

5
Basu P, Mettanant  V. Biomass gasification in supercritical water—A review. International Journal of Chemical Reactor Engineering, 2009, 7(1): 1919

DOI

6
Elliott D C. In hydrothermal processing. In: Brown R C, ed. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. West Sussex: Wiley, 2011, 200–231

7
Schmieder H, Abeln  J, Boukis N ,  Dinjus E ,  Kruse A ,  Kluth M ,  Petrich G ,  Sadri E ,  Schacht M . Hydrothermal gasification of biomass and organic wastes. Journal of Supercritical Fluids, 2000, 17(2): 145–153

DOI

8
Muangrat R, Onwudili  J A, Williams  P T. Alkali-promoted hydrothermal gasification of biomass food processing waste: A parametric study. International Journal of Hydrogen Energy, 2010, 35(14): 7405–7415

DOI

9
Azadi P, Afif  E, Azadi F ,  Farnood R . Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chemistry, 2012, 6(6): 1766–1777

DOI

10
Gökkaya D S ,  Saglam M ,  Yuksel M ,  Ballice L . Hydrothermal gasification of xylose: Effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution. Biomass and Bioenergy, 2016, 1: 26–36

DOI

11
Kruse A. Supercritical water gasification. Biofuels, Bioproducts & Biorefining, 2008, 2(5): 415–437

DOI

12
Ishida M, Takenaka  S, Yamanaka I ,  Otsuka K . Production of COx-free hydrogen from biomass and NaOH mixture: Effect of catalysts. Energy & Fuels, 2006, 20(2): 748–753

DOI

13
Nzihou A, Stanmore  B, Sharrock P . A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 2013, 58(1): 305–317

DOI

14
Tchapda A H, Pisupati  S V. A review of thermal co-conversion of coal and biomass/waste. Energies, 2014, 7(3): 1098–1148

DOI

15
Zhang Z, Pang  S, Levi T . Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass. Renewable Energy, 2017, 1: 356–363

DOI

16
Liu X, Xiong  B, Huang X ,  Ding H, Zheng  Y, Liu Z ,  Zheng C . Effect of catalysts on char structural evolution during hydrogasification under high pressure. Fuel, 2017, 88(15): 474–482

17
Guan G, Kaewpanha  M, Hao X ,  Abudula A . Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable & Sustainable Energy Reviews, 2016, 58: 450–461

DOI

18
Yan Q, Guo  L, Lu Y . Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Conversion and Management, 2006, 47(11-12): 1515–1528

DOI

19
Smith W R, Missen  R W. In Chemical Thermodynamics and Equilibrium Conditions; Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Hoboken: John Wiley & Sons, 1982, 40–60

20
Lee I, Kim  M, Ihm S . Gasification of glucose in supercritical water. Industrial & Engineering Chemistry Research, 2002, 41(5): 1182–1188

DOI

21
Phongkanpai V, Benjakul  S, Tanaka M . Effect of pH on antiocidative activity and other characteristics of caramelization products. Journal of Food Biochemistry, 2006, 30(2): 174–186

DOI

22
Onwudili J A, Williams  P T. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. International Journal of Hydrogen Energy, 2009, 34(14): 5645–5656

DOI

23
Lewis R. In Sodium Hydroxide; Hawley’s Condensed Chemical Dictionary. 15th ed. Hoboken: John Wiley & Sons, 2007, 1146

24
Kamo T, Takaoka  K, Otomo J ,  Takahashi H . Effect of steam and sodium hydroxide for the production of hydrogen on gasification of dehydrochlorinated poly(vinyl chloride). Fuel, 2006, 85(7-8): 1052–1059

DOI

25
Araki K, Yamaguchi  Y, Tsutsumi A ,  Fushimi C . Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Industrial & Engineering Chemistry Research, 2003, 42(17): 3929–3936

DOI

26
Azadi P, Syed  K M, Farnood  R. Catalytic gasification of biomass model compound in near-critical water. Applied Catalyst A, 2009, 358(1): 65–72

DOI

27
Widyawati M, Church  T L, Florin  N H, Harris  A T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy, 2011, 36(8): 4800–4813

DOI

28
Wen G, Xu  Y, Xu Z ,  Tian Z. Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. Catalysis Communications, 2010, 11(6): 522–526

DOI

29
Zheng C, Lee  D H, Yang  H, Chen H ,  Yan R, Liang  D T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels, 2005, 20: 388–393

Outlines

/