Alkali-thermal gasification and hydrogen generation potential of biomass

Alexander B. Koven, Shitang S. Tong, Ramin R. Farnood, Charles Q. Jia

PDF(267 KB)
PDF(267 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 369-378. DOI: 10.1007/s11705-017-1662-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Alkali-thermal gasification and hydrogen generation potential of biomass

Author information +
History +

Abstract

Generating hydrogen gas from biomass is one approach to lowering dependencies on fossil fuels for energy and chemical feedstock, as well as reducing greenhouse gas emissions. Using both equilibrium simulations and batch experiments with NaOH as a model alkaline, this study established the technical feasibility of converting various biomasses (e.g., glucose, cellulose, xylan and lignin) into H2-rich gas via catalyst-free, alkali-thermal gasification at moderate temperatures (as low as 300 °C). This process could produce more H2 with less carbon-containing gases in the product than other comparable methods. It was shown that alkali-thermal gasification followsCx HyOz+ 2xNaOH+(xz)H2 O= (2x+y/2z )H2+x Na2 CO 3, with carbonate being the solid product which is different from the one suggested in the literature. Moreover, the concept of hydrogen generation potential (H2-GP)—the maximum amount of H2 that a biomass can yield, was introduced. For a given biomass CxHyOz, the H2-GP would be moles of H2. It was demonstrated experimentally that the H2-GP was achievable by adjusting the amounts of H2O and NaOH, temperature and pressure.

Graphical abstract

Keywords

hydrogen generation potential / biomass / lignocellulose / alkali-thermal gasification / sodium hydroxide

Cite this article

Download citation ▾
Alexander B. Koven, Shitang S. Tong, Ramin R. Farnood, Charles Q. Jia. Alkali-thermal gasification and hydrogen generation potential of biomass. Front. Chem. Sci. Eng., 2017, 11(3): 369‒378 https://doi.org/10.1007/s11705-017-1662-y

References

[1]
Ishida M, Otsuka  K, Takenaka S ,  Yamanaka I . One-step production of CO- and CO2-free hydrogen from biomass. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2005, 80(3): 281–284
CrossRef Google scholar
[2]
EG&G Technical Services. I. In: Fuel Processing Techniques, Fuel Cell Handbook 7th ed. Morgantown: U.S. Department of Energy, 2004, 257–259
[3]
Balat H, Kırtay  E. Hydrogen from biomass—Present scenario and future prospects. International Journal of Hydrogen Energy, 2010, 35(14): 7416–7426
CrossRef Google scholar
[4]
Kirtay E. Recent advances in production of hydrogen from biomass. Energy Conversion and Management, 2011, 52(4): 1778–1789
CrossRef Google scholar
[5]
Basu P, Mettanant  V. Biomass gasification in supercritical water—A review. International Journal of Chemical Reactor Engineering, 2009, 7(1): 1919
CrossRef Google scholar
[6]
Elliott D C. In hydrothermal processing. In: Brown R C, ed. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. West Sussex: Wiley, 2011, 200–231
[7]
Schmieder H, Abeln  J, Boukis N ,  Dinjus E ,  Kruse A ,  Kluth M ,  Petrich G ,  Sadri E ,  Schacht M . Hydrothermal gasification of biomass and organic wastes. Journal of Supercritical Fluids, 2000, 17(2): 145–153
CrossRef Google scholar
[8]
Muangrat R, Onwudili  J A, Williams  P T. Alkali-promoted hydrothermal gasification of biomass food processing waste: A parametric study. International Journal of Hydrogen Energy, 2010, 35(14): 7405–7415
CrossRef Google scholar
[9]
Azadi P, Afif  E, Azadi F ,  Farnood R . Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chemistry, 2012, 6(6): 1766–1777
CrossRef Google scholar
[10]
Gökkaya D S ,  Saglam M ,  Yuksel M ,  Ballice L . Hydrothermal gasification of xylose: Effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution. Biomass and Bioenergy, 2016, 1: 26–36
CrossRef Google scholar
[11]
Kruse A. Supercritical water gasification. Biofuels, Bioproducts & Biorefining, 2008, 2(5): 415–437
CrossRef Google scholar
[12]
Ishida M, Takenaka  S, Yamanaka I ,  Otsuka K . Production of COx-free hydrogen from biomass and NaOH mixture: Effect of catalysts. Energy & Fuels, 2006, 20(2): 748–753
CrossRef Google scholar
[13]
Nzihou A, Stanmore  B, Sharrock P . A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 2013, 58(1): 305–317
CrossRef Google scholar
[14]
Tchapda A H, Pisupati  S V. A review of thermal co-conversion of coal and biomass/waste. Energies, 2014, 7(3): 1098–1148
CrossRef Google scholar
[15]
Zhang Z, Pang  S, Levi T . Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass. Renewable Energy, 2017, 1: 356–363
CrossRef Google scholar
[16]
Liu X, Xiong  B, Huang X ,  Ding H, Zheng  Y, Liu Z ,  Zheng C . Effect of catalysts on char structural evolution during hydrogasification under high pressure. Fuel, 2017, 88(15): 474–482
[17]
Guan G, Kaewpanha  M, Hao X ,  Abudula A . Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable & Sustainable Energy Reviews, 2016, 58: 450–461
CrossRef Google scholar
[18]
Yan Q, Guo  L, Lu Y . Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Conversion and Management, 2006, 47(11-12): 1515–1528
CrossRef Google scholar
[19]
Smith W R, Missen  R W. In Chemical Thermodynamics and Equilibrium Conditions; Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Hoboken: John Wiley & Sons, 1982, 40–60
[20]
Lee I, Kim  M, Ihm S . Gasification of glucose in supercritical water. Industrial & Engineering Chemistry Research, 2002, 41(5): 1182–1188
CrossRef Google scholar
[21]
Phongkanpai V, Benjakul  S, Tanaka M . Effect of pH on antiocidative activity and other characteristics of caramelization products. Journal of Food Biochemistry, 2006, 30(2): 174–186
CrossRef Google scholar
[22]
Onwudili J A, Williams  P T. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. International Journal of Hydrogen Energy, 2009, 34(14): 5645–5656
CrossRef Google scholar
[23]
Lewis R. In Sodium Hydroxide; Hawley’s Condensed Chemical Dictionary. 15th ed. Hoboken: John Wiley & Sons, 2007, 1146
[24]
Kamo T, Takaoka  K, Otomo J ,  Takahashi H . Effect of steam and sodium hydroxide for the production of hydrogen on gasification of dehydrochlorinated poly(vinyl chloride). Fuel, 2006, 85(7-8): 1052–1059
CrossRef Google scholar
[25]
Araki K, Yamaguchi  Y, Tsutsumi A ,  Fushimi C . Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Industrial & Engineering Chemistry Research, 2003, 42(17): 3929–3936
CrossRef Google scholar
[26]
Azadi P, Syed  K M, Farnood  R. Catalytic gasification of biomass model compound in near-critical water. Applied Catalyst A, 2009, 358(1): 65–72
CrossRef Google scholar
[27]
Widyawati M, Church  T L, Florin  N H, Harris  A T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy, 2011, 36(8): 4800–4813
CrossRef Google scholar
[28]
Wen G, Xu  Y, Xu Z ,  Tian Z. Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. Catalysis Communications, 2010, 11(6): 522–526
CrossRef Google scholar
[29]
Zheng C, Lee  D H, Yang  H, Chen H ,  Yan R, Liang  D T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels, 2005, 20: 388–393

Acknowledgements

Financial supports from NSERC of Canada in forms of research grant to CQJ and fellowship to ABK, the National Natural Science Foundation of China grants to Shitang S. Tong (Nos. 50574071 and 51174150) and the help of Dr Zhenwei Cui with processing figures are gratefully acknowledged.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-017-1662-y and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(267 KB)

Accesses

Citations

Detail

Sections
Recommended

/