Alkali-thermal gasification and hydrogen generation potential of biomass

Alexander B. Koven , Shitang S. Tong , Ramin R. Farnood , Charles Q. Jia

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 369 -378.

PDF (267KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 369 -378. DOI: 10.1007/s11705-017-1662-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Alkali-thermal gasification and hydrogen generation potential of biomass

Author information +
History +
PDF (267KB)

Abstract

Generating hydrogen gas from biomass is one approach to lowering dependencies on fossil fuels for energy and chemical feedstock, as well as reducing greenhouse gas emissions. Using both equilibrium simulations and batch experiments with NaOH as a model alkaline, this study established the technical feasibility of converting various biomasses (e.g., glucose, cellulose, xylan and lignin) into H2-rich gas via catalyst-free, alkali-thermal gasification at moderate temperatures (as low as 300 °C). This process could produce more H2 with less carbon-containing gases in the product than other comparable methods. It was shown that alkali-thermal gasification followsCx HyOz+ 2xNaOH+(xz)H2 O= (2x+y/2z )H2+x Na2 CO 3, with carbonate being the solid product which is different from the one suggested in the literature. Moreover, the concept of hydrogen generation potential (H2-GP)—the maximum amount of H2 that a biomass can yield, was introduced. For a given biomass CxHyOz, the H2-GP would be moles of H2. It was demonstrated experimentally that the H2-GP was achievable by adjusting the amounts of H2O and NaOH, temperature and pressure.

Graphical abstract

Keywords

hydrogen generation potential / biomass / lignocellulose / alkali-thermal gasification / sodium hydroxide

Cite this article

Download citation ▾
Alexander B. Koven, Shitang S. Tong, Ramin R. Farnood, Charles Q. Jia. Alkali-thermal gasification and hydrogen generation potential of biomass. Front. Chem. Sci. Eng., 2017, 11(3): 369-378 DOI:10.1007/s11705-017-1662-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ishida MOtsuka  KTakenaka S Yamanaka I . One-step production of CO- and CO2-free hydrogen from biomass. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)200580(3): 281–284

[2]

EG&G Technical Services. I. In: Fuel Processing Techniques, Fuel Cell Handbook 7th ed. Morgantown: U.S. Department of Energy2004, 257–259

[3]

Balat HKırtay  E. Hydrogen from biomass—Present scenario and future prospects. International Journal of Hydrogen Energy201035(14): 7416–7426

[4]

Kirtay E. Recent advances in production of hydrogen from biomass. Energy Conversion and Management201152(4): 1778–1789

[5]

Basu PMettanant  V. Biomass gasification in supercritical water—A review. International Journal of Chemical Reactor Engineering20097(1): 1919

[6]

Elliott D C. In hydrothermal processing. In: Brown R C, ed. Thermochemical Processing of Biomass: Conversion into Fuels, Chemicals and Power. West Sussex: Wiley2011, 200–231

[7]

Schmieder HAbeln  JBoukis N Dinjus E Kruse A Kluth M Petrich G Sadri E Schacht M . Hydrothermal gasification of biomass and organic wastes. Journal of Supercritical Fluids200017(2): 145–153

[8]

Muangrat ROnwudili  J AWilliams  P T. Alkali-promoted hydrothermal gasification of biomass food processing waste: A parametric study. International Journal of Hydrogen Energy201035(14): 7405–7415

[9]

Azadi PAfif  EAzadi F Farnood R . Screening of nickel catalysts for selective hydrogen production using supercritical water gasification of glucose. Green Chemistry20126(6): 1766–1777

[10]

Gökkaya D S Saglam M Yuksel M Ballice L . Hydrothermal gasification of xylose: Effects of reaction temperature, pressure, and K2CO3 as a catalyst on product distribution. Biomass and Bioenergy20161: 26–36

[11]

Kruse A. Supercritical water gasification. Biofuels, Bioproducts & Biorefining20082(5): 415–437

[12]

Ishida MTakenaka  SYamanaka I Otsuka K . Production of COx-free hydrogen from biomass and NaOH mixture: Effect of catalysts. Energy & Fuels200620(2): 748–753

[13]

Nzihou AStanmore  BSharrock P . A review of catalysts for the gasification of biomass char, with some reference to coal. Energy201358(1): 305–317

[14]

Tchapda A HPisupati  S V. A review of thermal co-conversion of coal and biomass/waste. Energies20147(3): 1098–1148

[15]

Zhang ZPang  SLevi T . Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass. Renewable Energy20171: 356–363

[16]

Liu XXiong  BHuang X Ding HZheng  YLiu Z Zheng C . Effect of catalysts on char structural evolution during hydrogasification under high pressure. Fuel201788(15): 474–482

[17]

Guan GKaewpanha  MHao X Abudula A . Catalytic steam reforming of biomass tar: Prospects and challenges. Renewable & Sustainable Energy Reviews201658: 450–461

[18]

Yan QGuo  LLu Y . Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water. Energy Conversion and Management200647(11-12): 1515–1528

[19]

Smith W RMissen  R W. In Chemical Thermodynamics and Equilibrium Conditions; Chemical Reaction Equilibrium Analysis: Theory and Algorithms. Hoboken: John Wiley & Sons1982, 40–60

[20]

Lee IKim  MIhm S . Gasification of glucose in supercritical water. Industrial & Engineering Chemistry Research200241(5): 1182–1188

[21]

Phongkanpai VBenjakul  STanaka M . Effect of pH on antiocidative activity and other characteristics of caramelization products. Journal of Food Biochemistry200630(2): 174–186

[22]

Onwudili J AWilliams  P T. Role of sodium hydroxide in the production of hydrogen gas from the hydrothermal gasification of biomass. International Journal of Hydrogen Energy200934(14): 5645–5656

[23]

Lewis R. In Sodium Hydroxide; Hawley’s Condensed Chemical Dictionary. 15th ed. Hoboken: John Wiley & Sons2007, 1146

[24]

Kamo TTakaoka  KOtomo J Takahashi H . Effect of steam and sodium hydroxide for the production of hydrogen on gasification of dehydrochlorinated poly(vinyl chloride). Fuel200685(7-8): 1052–1059

[25]

Araki KYamaguchi  YTsutsumi A Fushimi C . Effect of heating rate on steam gasification of biomass. 2. Thermogravimetric-mass spectrometric (TG-MS) analysis of gas evolution. Industrial & Engineering Chemistry Research200342(17): 3929–3936

[26]

Azadi PSyed  K MFarnood  R. Catalytic gasification of biomass model compound in near-critical water. Applied Catalyst A2009358(1): 65–72

[27]

Widyawati MChurch  T LFlorin  N HHarris  A T. Hydrogen synthesis from biomass pyrolysis with in situ carbon dioxide capture using calcium oxide. International Journal of Hydrogen Energy201136(8): 4800–4813

[28]

Wen GXu  YXu Z Tian Z. Direct conversion of cellulose into hydrogen by aqueous-phase reforming process. Catalysis Communications201011(6): 522–526

[29]

Zheng CLee  D HYang  HChen H Yan RLiang  D T. In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy & Fuels200520: 388–393

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (267KB)

Supplementary files

FCE-16082-OF-KA_suppl_1

3186

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/