RESEARCH ARTICLE

The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction

  • Baodong Song 1 ,
  • Yongqiang Li 1 ,
  • Gang Cao 2 ,
  • Zhenhai Sun 1 ,
  • Xu Han , 3
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. Nankai University Catalyst Co. Ltd, Tianjin 300072, China
  • 3. Key Lab of Indoor Air Environment Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China

Received date: 22 Feb 2017

Accepted date: 29 Mar 2017

Published date: 06 Nov 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

In the transformation of methanol to gasoline (MTG), the selectivity to gasoline and the aromatic content in the produced gasoline are important factors. The catalytic activities of steam-treated and non-steam-treated nano-scale H-ZSM-5 (NHZ5) catalysts impregnated with Ag(I), Zn(II) or P(V) have been investigated in a continuous flow fixed bed reactor. The NH3-TPD results showed that after impregnation, the Ag/NHZ5, Zn/NHZ5 and P/NHZ5 catalysts contained comparatively more strong, medium-strong and weak acid sites, respectively. Treatment with steam decreased the number of acid sites in all the catalysts, but the pore volumes in the catalysts were larger which improved carbon deposition resistance resulting in prolonged lifetimes. After 6 h of MTG reaction, the selectivity to gasoline for the steam-treated catalysts, AgH2O/NHZ5, ZnH2O/NHZ5 and PH2O/NHZ5 were 70.5, 68.4 and 68.7 wt-%, respectively, whereas their respective aromatic contents in the produced gasoline were 61.9, 55.4 and 39.0 wt-%. Thus PH2O/NHZ5 is the most promising catalyst for MTG applications which can meet the China IV gasoline standard that the amount of aromatics in gasoline should be less than 48 wt-%.

Cite this article

Baodong Song , Yongqiang Li , Gang Cao , Zhenhai Sun , Xu Han . The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(4) : 564 -574 . DOI: 10.1007/s11705-017-1654-y

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant No. 41373114), the Natural Science Foundation of Tianjin (No. 15JCZDJC40200), and the Foundation of Key Laboratory of Indoor Air Environment Quality Control (Tianjin University) is gratefully acknowledged.
1
Bjørgen M, Joensen F M, Holm M S, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43–50

DOI

2
Galadima A, Muraza O. From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review. Journal of Natural Gas Science and Engineering, 2015, 25: 303–316

DOI

3
Silva M J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Processing Technology, 2016, 145: 42–61

DOI

4
Keil F J. Methanol-to-hydrocarbons: Process technology. Microporous and Mesoporous Materials, 1999, 29(1): 49–66

DOI

5
Chang C D, Silvestri A J. The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977, 47(2): 249–259

DOI

6
Jae J, Tompsett G A, Foster A J, Hammond K D, Auerbach S M, Lobo R F, Huber G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 2011, 279(2): 257–268

DOI

7
Rownaghi A A, Rezaei F, Hedlund J. Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size. Catalysis Communications, 2011, 14(1): 37–41

DOI

8
Ding C, Wang X, Guo X, Zhang S. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst. Catalysis Communications, 2008, 9(4): 487–493

DOI

9
Firoozi M, Baghalha M, Asadi M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications, 2009, 10(12): 1582–1585

DOI

10
Saxena S K, Viswanadham N, Al-Muhtaseb A H. Enhanced production of high octane gasoline blending stock from methanol with improved catalyst life on nano-crystalline ZSM-5 catalyst. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2876–2882

DOI

11
Zaidi H A, Pant K. Catalytic conversion of methanol to gasoline range hydrocarbons. Catalysis Today, 2004, 96(3): 155–160

DOI

12
Inoue Y, Nakashiro K, Ono Y. Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites. Microporous Materials, 1995, 4(5): 379–383

DOI

13
Zhang S, Zhang B, Gao Z, Han Y. Methanol to olefin over Ca-modified HZSM-5 zeolites. Industrial & Engineering Chemistry Research, 2010, 49(5): 2103–2106

DOI

14
Ono Y, Adachi H, Senoda Y. Selective conversion of methanol into aromatic hydrocarbons over Zinc-exchanged ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions, 1988, 84(4): 1091–1099

DOI

15
Li M, Zhou Y, Oduro I N, Fang Y. Comparative study on the catalytic conversion of methanol and propanal over Ga/ZSM-5. Fuel, 2016, 168: 68–75

DOI

16
Dyballa M, Klemm E, Weitkamp J, Hunger M. Effect of phosphate modification on the Brønsted acidity and methanol-to-olefin conversion activity of zeolite ZSM-5. Chemieingenieurtechnik (Weinheim), 2013, 85(11): 1719–1725

DOI

17
Tynjala P, Pakkanen T T. Modification of ZSM-5 zeolite with trimethylphosphite. Microporous and Mesoporous Materials, 1998, 20(4): 363–369

DOI

18
Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance. Journal of Colloid and Interface Science, 2011, 361(2): 521–526

DOI

19
Liu Z, Dong X, Zhu Y, Emwas A H, Zhang D, Tian Q, Han Y. Investigating the Influence of mesoporosity in zeolite beta on its catalytic performance for the conversion of methanol to hydrocarbons. ACS Catalysis, 2015, 5(10): 5837–5845

DOI

20
Aramburo L R, Teketel S, Svelle S, Bare S R, Arstad B, Zandbergen H W, Olsbye U, Groot F M F, Weckhuysen B M. Interplay between nanoscale reactivity and bulk performance of H-ZSM-5 catalysts during the methanol-to-hydrocarbons reaction. Journal of Catalysis, 2013, 307: 185–193

DOI

21
Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry, 2011, 20(3): 237–242

DOI

22
Yue X, Wu Y, Hao J, Pang Y, Ma Y, Li Y, Li B, Bao X. Fuel quality manegement versus vehicle emission control in China status quo and future perspectives. Energy Policy, 2015, 79: 87–98

DOI

23
Kolesnichenko N V, Kitaev L E, Bukina Z M, Markova N A, Yushchenko V V, Yashina O V, Lin G I, Rozovskii A Y. Synthesis of gasoline from syngas via dimethyl ether. Kinetics and Catalysis, 2007, 48(6): 789–793

DOI

24
Treacy M M J, Higgins J B. Collection of simulated XRD powder patterns for zeolites. Applied Catalysis, 1986, 21(2): 388–389

DOI

25
Masuda T, Fujikata Y, Mukai S R, Hashimoto K. Changes in catalytic activity of MFI-type zeolites caused by dealumination in a steam atmosphere. Applied Catalysis: General, 1998, 178(1): 73–83

DOI

26
Widayatno W B, Guan G, Rizkiana J, Yang J, Hao X, Tsutsumi A, Abudula A. Upgrading of bio-oil from biomass pyrolysis over Cu-modified-b-zeolite catalyst with high selectivity and stability. Applied Catalysis B: Environmental, 2016, 186: 166–172

DOI

27
Miao S, Wang Y, Ma D, Zhu Q, Zhou S, Su L, Tan D, Bao X. Effect of Ag+ cations on nonoxidative activation of methane to C2-hydrocarbons. Journal of Physical Chemistry B, 2004, 108(46): 17866–17871

DOI

28
He X, Huang X, Wang Z, Yan Y. The role of silver species on the hydrothermal stability of zeolite catalysts. Microporous and Mesoporous Materials, 2011, 142(1): 398–403

DOI

29
Wang G L, Wu W, Zan W, Bai X F, Wang W J, Qi X, Kikhtyanin O V. Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1580–1586

DOI

30
Hodala J L, Halgeri A B, Shanbhag G V. Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene: Role of crystal size and acidity. Applied Catalysis A, General, 2014, 484: 8–16

DOI

31
Zhang P Q, Guo X W, Guo H C, Wang X S. Study of the performance of modified nano-scale ZSM-5zeolite on olefins reduction in FCC gasoline. Journal of Molecular Catalysis A Chemical, 2007, 261(2): 139–146

DOI

32
Stocker M. Methanol-to hydrocarbons: Catalystic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29(1-2): 3–48

DOI

33
Bisacrdi J A, Meitaner G D, Iglesia E. Structure and density of active Zn species in Zn/HZSM-5 propane aromatization catalyst. Journal of Catalysis, 1998, 179(1): 192–202

DOI

34
Lucas A, Canizares P, Duran A, Carrero A. Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity. Applied Catalysis: General, 1997, 154(1-2): 221–240

DOI

35
Abubakar S M, Marcus D M, Lee J C, Ehresmann J O, Chen C Y, Kletnieks P W, Guenther D R, Hayman M, Pavlova M, Nicholas J B, Haw J F. Structural and mechnistic investigation of a phosphate-modified HZSM-5 catalyst for methanol conversion. Langmuir, 2006, 22(10): 4846–4852

DOI

36
Sahoo S K, Viswanadham N, Ray N, Gupta J K, Singh I D. Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization. Applied Catalysis A, General, 2001, 205(1): 1–10

DOI

Outlines

/