The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction

Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han

PDF(480 KB)
PDF(480 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 564-574. DOI: 10.1007/s11705-017-1654-y
RESEARCH ARTICLE
RESEARCH ARTICLE

The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction

Author information +
History +

Abstract

In the transformation of methanol to gasoline (MTG), the selectivity to gasoline and the aromatic content in the produced gasoline are important factors. The catalytic activities of steam-treated and non-steam-treated nano-scale H-ZSM-5 (NHZ5) catalysts impregnated with Ag(I), Zn(II) or P(V) have been investigated in a continuous flow fixed bed reactor. The NH3-TPD results showed that after impregnation, the Ag/NHZ5, Zn/NHZ5 and P/NHZ5 catalysts contained comparatively more strong, medium-strong and weak acid sites, respectively. Treatment with steam decreased the number of acid sites in all the catalysts, but the pore volumes in the catalysts were larger which improved carbon deposition resistance resulting in prolonged lifetimes. After 6 h of MTG reaction, the selectivity to gasoline for the steam-treated catalysts, AgH2O/NHZ5, ZnH2O/NHZ5 and PH2O/NHZ5 were 70.5, 68.4 and 68.7 wt-%, respectively, whereas their respective aromatic contents in the produced gasoline were 61.9, 55.4 and 39.0 wt-%. Thus PH2O/NHZ5 is the most promising catalyst for MTG applications which can meet the China IV gasoline standard that the amount of aromatics in gasoline should be less than 48 wt-%.

Graphical abstract

Keywords

MTG / nano-scale H-ZSM-5 / steam treatment / gasoline / selectivity to gasoline

Cite this article

Download citation ▾
Baodong Song, Yongqiang Li, Gang Cao, Zhenhai Sun, Xu Han. The effect of doping and steam treatment on the catalytic activities of nano-scale H-ZSM-5 in the methanol to gasoline reaction. Front. Chem. Sci. Eng., 2017, 11(4): 564‒574 https://doi.org/10.1007/s11705-017-1654-y

References

[1]
Bjørgen M, Joensen F M, Holm M S, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43–50
CrossRef Google scholar
[2]
Galadima A, Muraza O. From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review. Journal of Natural Gas Science and Engineering, 2015, 25: 303–316
CrossRef Google scholar
[3]
Silva M J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Processing Technology, 2016, 145: 42–61
CrossRef Google scholar
[4]
Keil F J. Methanol-to-hydrocarbons: Process technology. Microporous and Mesoporous Materials, 1999, 29(1): 49–66
CrossRef Google scholar
[5]
Chang C D, Silvestri A J. The conversion of methanol and other o-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977, 47(2): 249–259
CrossRef Google scholar
[6]
Jae J, Tompsett G A, Foster A J, Hammond K D, Auerbach S M, Lobo R F, Huber G W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 2011, 279(2): 257–268
CrossRef Google scholar
[7]
Rownaghi A A, Rezaei F, Hedlund J. Yield of gasoline-range hydrocarbons as a function of uniform ZSM-5 crystal size. Catalysis Communications, 2011, 14(1): 37–41
CrossRef Google scholar
[8]
Ding C, Wang X, Guo X, Zhang S. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst. Catalysis Communications, 2008, 9(4): 487–493
CrossRef Google scholar
[9]
Firoozi M, Baghalha M, Asadi M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catalysis Communications, 2009, 10(12): 1582–1585
CrossRef Google scholar
[10]
Saxena S K, Viswanadham N, Al-Muhtaseb A H. Enhanced production of high octane gasoline blending stock from methanol with improved catalyst life on nano-crystalline ZSM-5 catalyst. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2876–2882
CrossRef Google scholar
[11]
Zaidi H A, Pant K. Catalytic conversion of methanol to gasoline range hydrocarbons. Catalysis Today, 2004, 96(3): 155–160
CrossRef Google scholar
[12]
Inoue Y, Nakashiro K, Ono Y. Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites. Microporous Materials, 1995, 4(5): 379–383
CrossRef Google scholar
[13]
Zhang S, Zhang B, Gao Z, Han Y. Methanol to olefin over Ca-modified HZSM-5 zeolites. Industrial & Engineering Chemistry Research, 2010, 49(5): 2103–2106
CrossRef Google scholar
[14]
Ono Y, Adachi H, Senoda Y. Selective conversion of methanol into aromatic hydrocarbons over Zinc-exchanged ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions, 1988, 84(4): 1091–1099
CrossRef Google scholar
[15]
Li M, Zhou Y, Oduro I N, Fang Y. Comparative study on the catalytic conversion of methanol and propanal over Ga/ZSM-5. Fuel, 2016, 168: 68–75
CrossRef Google scholar
[16]
Dyballa M, Klemm E, Weitkamp J, Hunger M. Effect of phosphate modification on the Brønsted acidity and methanol-to-olefin conversion activity of zeolite ZSM-5. Chemieingenieurtechnik (Weinheim), 2013, 85(11): 1719–1725
CrossRef Google scholar
[17]
Tynjala P, Pakkanen T T. Modification of ZSM-5 zeolite with trimethylphosphite. Microporous and Mesoporous Materials, 1998, 20(4): 363–369
CrossRef Google scholar
[18]
Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G. Facile synthesis of hierarchical nanocrystalline ZSM-5 zeolite under mild conditions and its catalytic performance. Journal of Colloid and Interface Science, 2011, 361(2): 521–526
CrossRef Google scholar
[19]
Liu Z, Dong X, Zhu Y, Emwas A H, Zhang D, Tian Q, Han Y. Investigating the Influence of mesoporosity in zeolite beta on its catalytic performance for the conversion of methanol to hydrocarbons. ACS Catalysis, 2015, 5(10): 5837–5845
CrossRef Google scholar
[20]
Aramburo L R, Teketel S, Svelle S, Bare S R, Arstad B, Zandbergen H W, Olsbye U, Groot F M F, Weckhuysen B M. Interplay between nanoscale reactivity and bulk performance of H-ZSM-5 catalysts during the methanol-to-hydrocarbons reaction. Journal of Catalysis, 2013, 307: 185–193
CrossRef Google scholar
[21]
Ni Y, Sun A, Wu X, Hai G, Hu J, Li T, Li G. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry, 2011, 20(3): 237–242
CrossRef Google scholar
[22]
Yue X, Wu Y, Hao J, Pang Y, Ma Y, Li Y, Li B, Bao X. Fuel quality manegement versus vehicle emission control in China status quo and future perspectives. Energy Policy, 2015, 79: 87–98
CrossRef Google scholar
[23]
Kolesnichenko N V, Kitaev L E, Bukina Z M, Markova N A, Yushchenko V V, Yashina O V, Lin G I, Rozovskii A Y. Synthesis of gasoline from syngas via dimethyl ether. Kinetics and Catalysis, 2007, 48(6): 789–793
CrossRef Google scholar
[24]
Treacy M M J, Higgins J B. Collection of simulated XRD powder patterns for zeolites. Applied Catalysis, 1986, 21(2): 388–389
CrossRef Google scholar
[25]
Masuda T, Fujikata Y, Mukai S R, Hashimoto K. Changes in catalytic activity of MFI-type zeolites caused by dealumination in a steam atmosphere. Applied Catalysis: General, 1998, 178(1): 73–83
CrossRef Google scholar
[26]
Widayatno W B, Guan G, Rizkiana J, Yang J, Hao X, Tsutsumi A, Abudula A. Upgrading of bio-oil from biomass pyrolysis over Cu-modified-b-zeolite catalyst with high selectivity and stability. Applied Catalysis B: Environmental, 2016, 186: 166–172
CrossRef Google scholar
[27]
Miao S, Wang Y, Ma D, Zhu Q, Zhou S, Su L, Tan D, Bao X. Effect of Ag+ cations on nonoxidative activation of methane to C2-hydrocarbons. Journal of Physical Chemistry B, 2004, 108(46): 17866–17871
CrossRef Google scholar
[28]
He X, Huang X, Wang Z, Yan Y. The role of silver species on the hydrothermal stability of zeolite catalysts. Microporous and Mesoporous Materials, 2011, 142(1): 398–403
CrossRef Google scholar
[29]
Wang G L, Wu W, Zan W, Bai X F, Wang W J, Qi X, Kikhtyanin O V. Preparation of Zn-modified nano-ZSM-5 zeolite and its catalytic performance in aromatization of 1-hexene. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1580–1586
CrossRef Google scholar
[30]
Hodala J L, Halgeri A B, Shanbhag G V. Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene: Role of crystal size and acidity. Applied Catalysis A, General, 2014, 484: 8–16
CrossRef Google scholar
[31]
Zhang P Q, Guo X W, Guo H C, Wang X S. Study of the performance of modified nano-scale ZSM-5zeolite on olefins reduction in FCC gasoline. Journal of Molecular Catalysis A Chemical, 2007, 261(2): 139–146
CrossRef Google scholar
[32]
Stocker M. Methanol-to hydrocarbons: Catalystic materials and their behavior. Microporous and Mesoporous Materials, 1999, 29(1-2): 3–48
CrossRef Google scholar
[33]
Bisacrdi J A, Meitaner G D, Iglesia E. Structure and density of active Zn species in Zn/HZSM-5 propane aromatization catalyst. Journal of Catalysis, 1998, 179(1): 192–202
CrossRef Google scholar
[34]
Lucas A, Canizares P, Duran A, Carrero A. Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity. Applied Catalysis: General, 1997, 154(1-2): 221–240
CrossRef Google scholar
[35]
Abubakar S M, Marcus D M, Lee J C, Ehresmann J O, Chen C Y, Kletnieks P W, Guenther D R, Hayman M, Pavlova M, Nicholas J B, Haw J F. Structural and mechnistic investigation of a phosphate-modified HZSM-5 catalyst for methanol conversion. Langmuir, 2006, 22(10): 4846–4852
CrossRef Google scholar
[36]
Sahoo S K, Viswanadham N, Ray N, Gupta J K, Singh I D. Studies on acidity, activity and coke deactivation of ZSM-5 during n-heptane aromatization. Applied Catalysis A, General, 2001, 205(1): 1–10
CrossRef Google scholar

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant No. 41373114), the Natural Science Foundation of Tianjin (No. 15JCZDJC40200), and the Foundation of Key Laboratory of Indoor Air Environment Quality Control (Tianjin University) is gratefully acknowledged.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(480 KB)

Accesses

Citations

Detail

Sections
Recommended

/