Frontiers of Chemical Science and Engineering >
A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries
Received date: 30 Nov 2016
Accepted date: 21 Mar 2017
Published date: 23 Aug 2017
Copyright
Coating commercial porous polyolefin separators with inorganic materials can improve the thermal stability of the polyolefin separators and hence improve the safety of lithium-ion batteries. Several different inorganic materials have been studied for the coating. However, there lacks a study on how different inorganic materials affect the properties of separators, in terms of thermal stability and cell performance. Herein, we present such a study on coating a commercial polypropylene separator with four inorganic materials, i.e., Al2O3, SiO2, ZrO2 and zeolite. All inorganic coatings have improved thermal stability of the separators although with differences. The coating layers add 28%–45% of electrical resistance compared with the pure polypropylene separator, but all the cells prepared with the coated polypropylene separators have the same electrical chemical performance as the uncoated separator in terms of rate capability and capacities at different temperatures.
Key words: lithium-ion battery; battery safety; composite separator; porosity; tortuosity
Linghui Yu , Jiansong Miao , Yi Jin , Jerry Y.S. Lin . A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(3) : 346 -352 . DOI: 10.1007/s11705-017-1648-9
1 |
Goodenough J B, Park K S. The li-ion rechargeable battery: A perspective. Journal of the American Chemical Society, 2013, 135(4): 1167–1176
|
2 |
Choi N S, Chen Z, Freunberger S A, Ji X, Sun Y K, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G. Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie International Edition, 2012, 51(40): 9994–10024
|
3 |
Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources, 2012, 208: 210–224
|
4 |
Balakrishnan P G, Ramesh R, Kumar T P. Safety mechanisms in lithium-ion batteries. Journal of Power Sources, 2006, 155(2): 401–414
|
5 |
Goodenough J B, Kim Y. Challenges for rechargeable Li batteries. Chemistry of Materials, 2010, 22(3): 587–603
|
6 |
Wu H, Zhuo D, Kong D, Cui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nature Communications, 2014, 5: 5193
|
7 |
Chen Z, Hsu P C, Lopez J, Li Y, To J W F, Liu N, Wang C, Andrews Sean C, Liu J, Cui Y, Bao Z. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy, 2016, 1(1): 15009
|
8 |
Augustin S, Hennige V, Hörpel G, Hying C. Ceramic but flexible: New ceramic membrane foils for fuel cells and batteries. Desalination, 2002, 146(1-3): 23–28
|
9 |
Yang P, Zhang P, Shi C, Chen L, Dai J, Zhao J. The functional separator coated with core-shell structured silica-poly (methyl methacrylate) sub-microspheres for lithium-ion batteries. Journal of Membrane Science, 2015, 474: 148–155
|
10 |
Zhang S S. A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources, 2007, 164(1): 351–364
|
11 |
Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science, 2014, 7(12): 3857–3886
|
12 |
Huang X, Hitt J. Lithium ion battery separators: Development and performance characterization of a composite membrane. Journal of Membrane Science, 2013, 425-426: 163–168
|
13 |
Jeong H S, Lee S Y. Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources, 2011, 196(16): 6716–6722
|
14 |
Fu D, Luan B, Argue S, Bureau M N, Davidson I J. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. Journal of Power Sources, 2012, 206: 325–333
|
15 |
Kim M, Park J H. Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. Journal of Power Sources, 2012, 212: 22–27
|
16 |
Fang L F, Shi J L, Jiang J H, Li H, Zhu B K, Zhu L P. Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Advances, 2014, 4(43): 22501–22508
|
17 |
Prasanna K, Kim C S, Lee C W. Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries. Materials Chemistry and Physics, 2014, 146(3): 545–550
|
18 |
Zhang P, Chen L, Shi C, Yang P, Zhao J. Development and characterization of silica tube-coated separator for lithium ion batteries. Journal of Power Sources, 2015, 284: 10–15
|
19 |
Jeong H S, Hong S C, Lee S Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. Journal of Membrane Science, 2010, 364(1-2): 177–182
|
20 |
Jeong H S, Kim D W, Jeong Y U, Lee S Y. Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. Journal of Power Sources, 2010, 195(18): 6116–6121
|
21 |
Lee T, Kim W K, Lee Y, Ryou M H, Lee Y M. Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries. Macromolecular Research, 2014, 22(11): 1190–1195
|
22 |
Kim K, Hepowit L, Kim J C, Lee Y G, Ko J. Enhanced separator properties by coating alumina nanoparticles with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) binder for lithium-ion batteries. Korean Journal of Chemical Engineering, 2015, 32(4): 717–722
|
23 |
Wang J, Hu Z, Yin X, Li Y, Huo H, Zhou J, Li L. Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator film for lithium ion power batteries. Electrochimica Acta, 2015, 159: 61–65
|
24 |
Yeon D, Lee Y, Ryou M H, Lee Y M. New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochimica Acta, 2015, 157: 282–289
|
25 |
Dong X L, Mi W L, Yu L H, Jin Y, Lin Y S. Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous and Mesoporous Materials, 2016, 226: 406–414
|
26 |
Zhang Z, Li X, Shi L, Ramadass P, Halmo P M, Zhang X. Separator membranes for lithium ion batteries and related methods. US Patent, 20140045033 A1, 2014
|
27 |
Call R W, Fulk C W, Shi L, Zhang X, Nguyen K V. Co-extruded, multi-layered battery separator. US Patent, 2008: US2008/0118827 A1
|
28 |
Yu L H, Jin Y, Lin Y S. Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: Effects of high melting point organic binder. RSC Advances, 2016, 6(46): 40002–40009
|
29 |
An M Y, Kim H T, Chang D R. Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries. Journal of Solid State Electrochemistry, 2014, 18(7): 1807–1814
|
30 |
Shin W K, Kim D W. High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. Journal of Power Sources, 2013, 226(0): 54–60
|
31 |
Arora P, Zhang Z. Battery separators. Chemical Reviews, 2004, 104(10): 4419–4462
|
/
〈 | 〉 |