A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries

Linghui Yu , Jiansong Miao , Yi Jin , Jerry Y.S. Lin

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 346 -352.

PDF (328KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 346 -352. DOI: 10.1007/s11705-017-1648-9
RESEARCH ARTICLE
RESEARCH ARTICLE

A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries

Author information +
History +
PDF (328KB)

Abstract

Coating commercial porous polyolefin separators with inorganic materials can improve the thermal stability of the polyolefin separators and hence improve the safety of lithium-ion batteries. Several different inorganic materials have been studied for the coating. However, there lacks a study on how different inorganic materials affect the properties of separators, in terms of thermal stability and cell performance. Herein, we present such a study on coating a commercial polypropylene separator with four inorganic materials, i.e., Al2O3, SiO2, ZrO2 and zeolite. All inorganic coatings have improved thermal stability of the separators although with differences. The coating layers add 28%–45% of electrical resistance compared with the pure polypropylene separator, but all the cells prepared with the coated polypropylene separators have the same electrical chemical performance as the uncoated separator in terms of rate capability and capacities at different temperatures.

Graphical abstract

Keywords

lithium-ion battery / battery safety / composite separator / porosity / tortuosity

Cite this article

Download citation ▾
Linghui Yu, Jiansong Miao, Yi Jin, Jerry Y.S. Lin. A comparative study on polypropylene separators coated with different inorganic materials for lithium-ion batteries. Front. Chem. Sci. Eng., 2017, 11(3): 346-352 DOI:10.1007/s11705-017-1648-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Goodenough J BPark K S. The li-ion rechargeable battery: A perspective. Journal of the American Chemical Society2013135(4): 1167–1176

[2]

Choi N SChen ZFreunberger S AJi XSun Y KAmine KYushin GNazar L FCho JBruce P G. Challenges facing lithium batteries and electrical double-layer capacitors. Angewandte Chemie International Edition201251(40): 9994–10024

[3]

Wang QPing PZhao XChu GSun JChen C. Thermal runaway caused fire and explosion of lithium ion battery. Journal of Power Sources2012208: 210–224

[4]

Balakrishnan P GRamesh RKumar T P. Safety mechanisms in lithium-ion batteries. Journal of Power Sources2006155(2): 401–414

[5]

Goodenough J BKim Y. Challenges for rechargeable Li batteries. Chemistry of Materials201022(3): 587–603

[6]

Wu HZhuo DKong DCui Y. Improving battery safety by early detection of internal shorting with a bifunctional separator. Nature Communications20145: 5193

[7]

Chen ZHsu P CLopez JLi YTo J W FLiu NWang CAndrews Sean CLiu JCui YBao Z. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nature Energy20161(1): 15009

[8]

Augustin SHennige VHörpel GHying C. Ceramic but flexible: New ceramic membrane foils for fuel cells and batteries. Desalination2002146(1-3): 23–28

[9]

Yang PZhang PShi CChen LDai JZhao J. The functional separator coated with core-shell structured silica-poly (methyl methacrylate) sub-microspheres for lithium-ion batteries. Journal of Membrane Science2015474: 148–155

[10]

Zhang S S. A review on the separators of liquid electrolyte Li-ion batteries. Journal of Power Sources2007164(1): 351–364

[11]

Lee HYanilmaz MToprakci OFu KZhang X. A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy & Environmental Science20147(12): 3857–3886

[12]

Huang XHitt J. Lithium ion battery separators: Development and performance characterization of a composite membrane. Journal of Membrane Science2013425-426: 163–168

[13]

Jeong H SLee S Y. Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. Journal of Power Sources2011196(16): 6716–6722

[14]

Fu DLuan BArgue SBureau M NDavidson I J. Nano SiO2 particle formation and deposition on polypropylene separators for lithium-ion batteries. Journal of Power Sources2012206: 325–333

[15]

Kim MPark J H. Inorganic thin layer coated porous separator with high thermal stability for safety reinforced Li-ion battery. Journal of Power Sources2012212: 22–27

[16]

Fang L FShi J LJiang J HLi HZhu B KZhu L P. Improving the wettability and thermal resistance of polypropylene separators with a thin inorganic-organic hybrid layer stabilized by polydopamine for lithium ion batteries. RSC Advances20144(43): 22501–22508

[17]

Prasanna KKim C SLee C W. Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries. Materials Chemistry and Physics2014146(3): 545–550

[18]

Zhang PChen LShi CYang PZhao J. Development and characterization of silica tube-coated separator for lithium ion batteries. Journal of Power Sources2015284: 10–15

[19]

Jeong H SHong S CLee S Y. Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries. Journal of Membrane Science2010364(1-2): 177–182

[20]

Jeong H SKim D WJeong Y ULee S Y. Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries. Journal of Power Sources2010195(18): 6116–6121

[21]

Lee TKim W KLee YRyou M HLee Y M. Effect of Al2O3 coatings prepared by RF sputtering on polyethylene separators for high-power lithium ion batteries. Macromolecular Research201422(11): 1190–1195

[22]

Kim KHepowit LKim J CLee Y GKo J. Enhanced separator properties by coating alumina nanoparticles with poly(2-acrylamido-2-methyl-1-propanesulfonic acid) binder for lithium-ion batteries. Korean Journal of Chemical Engineering201532(4): 717–722

[23]

Wang JHu ZYin XLi YHuo HZhou JLi L. Alumina/phenolphthalein polyetherketone ceramic composite polypropylene separator film for lithium ion power batteries. Electrochimica Acta2015159: 61–65

[24]

Yeon DLee YRyou M HLee Y M. New flame-retardant composite separators based on metal hydroxides for lithium-ion batteries. Electrochimica Acta2015157: 282–289

[25]

Dong X LMi W LYu L HJin YLin Y S. Zeolite coated polypropylene separators with tunable surface properties for lithium-ion batteries. Microporous and Mesoporous Materials2016226: 406–414

[26]

Zhang ZLi XShi LRamadass PHalmo P MZhang X. Separator membranes for lithium ion batteries and related methods. US Patent, 20140045033 A12014

[27]

Call R WFulk C WShi LZhang XNguyen K V. Co-extruded, multi-layered battery separator. US Patent2008US2008/0118827 A1

[28]

Yu L HJin YLin Y S. Ceramic coated polypropylene separators for lithium-ion batteries with improved safety: Effects of high melting point organic binder. RSC Advances20166(46): 40002–40009

[29]

An M YKim H TChang D R. Multilayered separator based on porous polyethylene layer, Al2O3 layer, and electro-spun PVdF nanofiber layer for lithium batteries. Journal of Solid State Electrochemistry201418(7): 1807–1814

[30]

Shin W KKim D W. High performance ceramic-coated separators prepared with lithium ion-containing SiO2 particles for lithium-ion batteries. Journal of Power Sources2013226(0): 54–60

[31]

Arora PZhang Z. Battery separators. Chemical Reviews2004104(10): 4419–4462

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (328KB)

3955

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/