Frontiers of Chemical Science and Engineering >
Design, synthesis, biological activity and density function theory study of pyrazole derivatives containing 1,3,4-thiadiazole moiety
Received date: 28 Sep 2016
Accepted date: 09 Jan 2017
Published date: 23 Aug 2017
Copyright
A variety of pyrazole derivatives containing 1,3,4-thiadiazole moiety were synthesized under microwave irradiation, and their structures were confirmed by 1H NMR and HRMS. They were evaluated for herbicidal and antifungal activities, and the results indicated that two compounds with a phenyl group (6a) and 4-tert-butylphenyl group (6n) possess good herbicidal activity for dicotyledon Brassica campestris and Raphanus sativus with the inhibition of 90% for root and 80%–90% for stalk at 100 ppm respectively. The structure-activity relationship of compounds 6a and 6n was also studied by density function theory method.
Xiaoming Ding , Zhiwen Zhai , Luping Lv , Zhaohui Sun , Xinghai Liu . Design, synthesis, biological activity and density function theory study of pyrazole derivatives containing 1,3,4-thiadiazole moiety[J]. Frontiers of Chemical Science and Engineering, 2017 , 11(3) : 379 -386 . DOI: 10.1007/s11705-017-1634-2
1 |
Lei K, Sun D W, Hua X W, Tao Y Y, Xu X H, Kong C H. Synthesis, fungicidal activity and structure-activity relationships of 3-benzoyl-4-hydroxylcoumarin derivatives. Pest Management Science, 2016, 72(7): 1381–1389
|
2 |
Li M, Liu C L, Zhang J, Wu Q, Hao S L, Song Y Q. Design, synthesis and structure-activity relationship of novel insecticidal dichloro-allyloxy-phenol derivatives containing substituted pyrazol-3-ols. Pest Management Science, 2013, 69(5): 635–641
|
3 |
Gan X H, Hu D Y, Li P, Wu J, Chen X W, Xue W, Song B A. Design, synthesis, antiviral activity and three-dimensional quantitative structure-activity relationship study of novel 1,4-pentadien-3-one derivatives containing the 1,3,4-oxadiazole moiety. Pest Management Science, 2016, 72(3): 534–543
|
4 |
Bera H, Dolzhenko A V, Sun L Y, Gupta S D, Chui W K. Synthesis and in vitro evaluation of 1,2,4-triazolo[1,5-a][1,3,5]triazine derivatives as thymidine phosphorylase inhibitors. Chemical Biology & Drug Design, 2013, 82(3): 351–360
|
5 |
Xiao Y S, Yan X J, Xu Y J, Huang J X, Yuan H Z, Liang X M, Zhang J J, Wang D Q. Design synthesis and fungicidal activity of 1,1-alkoxyimino-5,6-dihydro-dibenzo[b,e]azepine-6-one derivatives. Pest Management Science, 2013, 69(7): 814–826
|
6 |
Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. One-pot synthesis of new triazole-imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorganic & Medicinal Chemistry Letters, 2015, 25(19): 4169–4173
|
7 |
Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D. Ionic liquid-promoted one-pot synthesis of thiazole-imidazo[2,1-b][1,3,4] thiadiazole hybrids and their antitubercular activity. MedChemComm, 2016, 7(2): 338–344
|
8 |
Romagnoli R, Baraldi P G, Prencipe F, Balzarini J, Liekens S, Estevez F. Design synthesis and antiproliferative activity of novel heterobivalent hybrids based on imidazo[2,1-b][1,3,4]thiadiazole and imidazo[2,1-b][1,3]thiazole scaffolds. European Journal of Medicinal Chemistry, 2015, 101: 205–217
|
9 |
Zhang L J, Yang M Y, Sun Z H, Tan C X, Weng J Q, Wu H K, Liu X H. Synthesis and antifungal activity of 1,3,4-thiadiazole derivatives containing pyridine group. Letters in Drug Design & Discovery, 2014, 11(9): 1107–1111
|
10 |
Yan S L, Yang M Y, Sun Z H, Min L J, Tan C X, Weng J Q, Wu H K, Liu X H. Synthesis and antifungal activity of 1,2,3-thiadiazole derivatives containing 1,3,4-thiadiazole moiety. Letters in Drug Design & Discovery, 2014, 11(7): 940–943
|
11 |
Maddila S, Gorle S, Singh M, Lavanya P, Jonnalagadda S B. Synthesis and anti-inflammatory activity of fused 1,2,4-triazolo-[3,4-b][1,3,4]thiadiazole derivatives of phenothiazine. Letters in Drug Design & Discovery, 2013, 10: 977–983
|
12 |
Barbuceanu S F, Ilies D C, Radulescu V, Socea L I, Draghici C, Saramet G. Synthesis, characterization and antioxidant activity evaluation of some 1,3,4-thiadiazole and 1,3,4-oxadiazole compounds. Revista de Chimie, 2014, 65: 1172–1175
|
13 |
Skrzypek A, Matysiak J, Karpinska M M, Niewiadomy A. Synthesis and anticholinesterase activities of novel 1,3,4-thiadiazole based compounds. Journal of Enzyme Inhibition and Medicinal Chemistry, 2013, 28(4): 816–823
|
14 |
Bhinge S D, Chature V, Sonawane L V. Synthesis of some novel 1,3,4-thiadiazole derivatives and biological screening for anti-microbial antifungal and anthelmintic activity. Pharmaceutical Chemistry Journal, 2015, 49(6): 367–372
|
15 |
Zhu H L, Liu Y W, Liu W W, Yin F J, Cao Z L, Bao J, Li M, Qin L Y, Shi D H. Synthesis characterisation and acetylcholinesterase-inhibition activities of 5-benzyl-1,3,4-thiadiazol-2-amine derivatives. Journal of Chemical Research, 2016, 1(1): 16–20
|
16 |
Gomha S M, Salaheldin T A, Hassaneen H M E, Abdel-Aziz H M, Khedr M A. Synthesis, characterization and molecular docking of novel bioactive thiazolyl-thiazole derivatives as promising cytotoxic antitumor drug. Molecules (Basel, Switzerland), 2016, 21(1): 3
|
17 |
Liu Y J, Feng G B, Ma Z H, Xu C, Guo Z, Gong P, Xu L Y. Synthesis and anti-hepatitis B virus evaluation of 7-methoxy-3-heterocyclic quinolin-6-ols. Archiv der Pharmazie, 2015, 348(11): 776–785
|
18 |
Zhai Z W, Shi Y X, Yang M Y, Zhao W, Sun Z H, Weng J Q, Tan C X, Liu X H, Li B J, Zhang Y G. Microwave assisted synthesis and antifungal activity of some novel thioethers containing 1,2,4-triazolo[4,3-a]pyridine moiety. Letters in Drug Design & Discovery, 2016, 13(6): 521–525
|
19 |
Balbaa M, Shibli A, Hosna R, Yusef H, Boraei A T A, El Ashry E H. Biological effect of glycosyl-oxadiazolinethione and glycosyl-sulfanyloxadiazole derivatives through their in vitro inhibition of glycosidases from bacteria and normal or diabetic rats. Letters in Drug Design & Discovery, 2015, 12(3): 211–218
|
20 |
Qi D Q, You J Z, Wang X J, Zhang Y P. Synthesis crystal structures and xanthine oxidase inhibitory activity of 2-(benzylthio)-5-[1-(4-fluorobenzyl)-3-phenyl-1H-pyrazol-5-yl]-1,3,4-oxadiazoles derivatives. Journal of Chemical Research, 2008, 12: 706–710
|
21 |
Bhat M A, Al-Omar M A, Naglah A M, Abdulla M M, Fun H K. Synthesis and antitumor activity of 4-cyclohexyl/aryl-5-(pyridin-4-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thiones. Medicinal Chemistry Research, 2015, 24(4): 1558–1567
|
22 |
Abdel-Hamid M K, Abdel-Hafez A A, El-Koussi N A, Mahfouz N M, Innocenti A, Supuran C T. Design, synthesis, and docking studies of new 1,3,4-thiadiazole-2-thione derivatives with carbonic anhydrase inhibitory activity. Bioorganic & Medicinal Chemistry, 2007, 15(22): 6975–6984
|
23 |
Zhao W, Xing J, Xu T, Peng W, Liu X. Synthesis and in vivo nematocidal evaluation of novel 3-(trifluoromethyl)-1H-pyrazole-4-carboxamide derivatives. Frontiers of Chemical Science and Engineering, 2017, DOI: 10.1007/s11705-016-1595-x
|
24 |
Ningaiah S, Bhadraiah U K, Doddaramappa S D, Keshavamurthy S, Javarasetty C. Novel pyrazole integrated 1,3,4-oxadiazoles: Synthesis, characterization and antimicrobial evaluation. Bioorganic & Medicinal Chemistry Letters, 2014, 24(1): 245–248
|
25 |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C,
|
26 |
Wang Z J, Gao Y, Hou Y L, Zhang C, Yu S J, Bian Q, Li Z M, Zhao W G. Design, synthesis, and fungicidal evaluation of a series of novel 5-methyl-1H-1,2,3-trizole-4-carboxyl amide and ester analogues. European Journal of Medicinal Chemistry, 2014, 68: 87–94
|
27 |
Patil R, Bhand S, Konkimalla V B, Banerjee P, Ugale B, Chadar D, Saha S K, Praharaj P P, Nagaraja C M, Chakrovarty D,
|
/
〈 | 〉 |